【小白必看】Python爬取NBA球员数据示例

2023-11-01 12:10

本文主要是介绍【小白必看】Python爬取NBA球员数据示例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 导入需要的库和模块
  • 设置请求头和请求地址
  • 发送HTTP请求并获取响应
  • 处理响应结果
  • 解析数据
  • 将结果保存到文件
  • 完整代码
    • 详细解析
  • 运行效果
  • 结束语

在这里插入图片描述

前言

使用 Python 爬取 NBA 球员数据的示例代码。通过发送 HTTP 请求,解析 HTML 页面,然后提取出需要的排名、姓名、球队和得分信息,并将结果保存到文件中。

导入需要的库和模块

在这里插入图片描述

import requests
from lxml import etree
  • 使用requests库发送HTTP请求。
  • 使用lxml库进行HTML解析。

设置请求头和请求地址

在这里插入图片描述

url = 'https://nba.hupu.com/stats/players'
headers ={'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/78.0.3904.70 Safari/537.36'
}
  • 设置请求头信息,包括用户代理(User-Agent)。
  • 设置请求的地址为’https://nba.hupu.com/stats/players’。

发送HTTP请求并获取响应

在这里插入图片描述

resp = requests.get(url, headers=headers)
  • 使用requests库发送HTTP GET请求,并传入请求地址和请求头信息。
  • 将返回的响应保存在变量resp中。

处理响应结果

在这里插入图片描述

e = etree.HTML(resp.text)
  • 使用etree.HTML函数将返回的响应文本解析为一个可操作的HTML元素树对象。
  • 将解析后的结果保存在变量e中。

解析数据

在这里插入图片描述

nos = e.xpath('//table[@class="players_table"]//tr/td[1]/text()')
names = e.xpath('//table[@class="players_table"]//tr/td[2]/a/text()')
teams = e.xpath('//table[@class="players_table"]//tr/td[3]/a/text()')
scores = e.xpath('//table[@class="players_table"]//tr/td[4]/text()')
  • 使用XPath表达式从HTML元素树中提取需要的数据。
  • 分别将排名(nos)、姓名(names)、球队(teams)和得分(scores)保存在对应的变量中。

将结果保存到文件

with open('nba.txt', 'w', encoding='utf-8') as f:for no, name, team, score in zip(nos, names, teams, scores):f.write(f'排名:{no} 姓名:{name}  球队:{team} 得分:{score}\n')
  • 打开一个文件nba.txt,以写入模式(‘w’)进行操作,编码方式为UTF-8。
  • 使用zip函数同时遍历排名、姓名、球队和得分,将它们合并成一个元组。
  • 将每一行的数据按照指定格式写入文件中。

完整代码

# 引入 requests 库,用于发送 HTTP 请求
import requests
# 引入 lxml 库,用于解析 HTML
from lxml import etree# 设置请求的地址
url = 'https://nba.hupu.com/stats/players'
# 设置请求头信息,包括用户代理(User-Agent)
headers ={ 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/78.0.3904.70 Safari/537.36'
}# 发送HTTP GET请求,并传入请求地址和请求头信息,将返回的响应保存在变量resp中
resp = requests.get(url, headers=headers)# 使用etree.HTML函数将返回的响应文本解析为一个可操作的HTML元素树对象
e = etree.HTML(resp.text)# 使用XPath表达式从HTML元素树中提取需要的数据
nos = e.xpath('//table[@class="players_table"]//tr/td[1]/text()')
names = e.xpath('//table[@class="players_table"]//tr/td[2]/a/text()')
teams = e.xpath('//table[@class="players_table"]//tr/td[3]/a/text()')
scores = e.xpath('//table[@class="players_table"]//tr/td[4]/text()')# 打开一个文件`nba.txt`,以写入模式('w')进行操作,编码方式为UTF-8
with open('nba.txt', 'w', encoding='utf-8') as f:# 使用zip函数同时遍历排名、姓名、球队和得分,将它们合并成一个元组for no, name, team, score in zip(nos, names, teams, scores):# 将每一行的数据按照指定格式写入文件中f.write(f'排名:{no} 姓名:{name}  球队:{team} 得分:{score}\n')

详细解析

# pip install requests
import requests

导入 requests 库,该库用于发送 HTTP 请求。

# pip install lxml
from lxml import etree

导入 lxml 库,该库用于解析 HTML。

# 发送的地址
url = 'https://nba.hupu.com/stats/players'

设置需要发送请求的地址。

headers ={ 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/78.0.3904.70 Safari/537.36'}

设置请求头信息,包括用户代理(User-Agent)。这个信息告诉服务器我们的请求是从一个浏览器发出的,而不是爬虫,这样可以避免被反爬虫机制阻止。

# 发送请求
resp = requests.get(url,headers = headers)

使用 requests.get 方法发送 HTTP GET 请求,并传入请求地址和请求头信息。将返回的响应保存在变量 resp 中。

e = etree.HTML(resp.text)

使用 etree.HTML 函数将返回的响应文本解析为一个可操作的 HTML 元素树对象。etree.HTML 接受一个字符串类型的参数,这里使用 resp.text 来获取响应的文本内容。

nos = e.xpath('//table[@class="players_table"]//tr/td[1]/text()')
names = e.xpath('//table[@class="players_table"]//tr/td[2]/a/text()')
teams = e.xpath('//table[@class="players_table"]//tr/td[3]/a/text()')
scores = e.xpath('//table[@class="players_table"]//tr/td[4]/text()')

使用 XPath 表达式从 HTML 元素树中提取需要的数据。这里分别使用了四个 XPath 表达式来提取排名、姓名、球队和得分的数据,并将它们分别保存在 nosnamesteamsscores 变量中。

with open('nba.txt','w',encoding='utf-8') as f:for no,name,team,score in zip(nos,names,teams,scores):f.write(f'排名:{no} 姓名:{name}  球队:{team} 得分:{score}\n')

以写入模式(‘w’)打开一个名为 nba.txt 的文件,并使用 UTF-8 编码。然后,使用 zip 函数同时遍历排名、姓名、球队和得分,将它们合并成一个元组。通过循环遍历每个元组,将每行的数据按照指定格式写入文件中。

这样,代码就实现了对 NBA 球员数据进行爬取,并将结果保存到 nba.txt 文件中。

运行效果

在这里插入图片描述

结束语

通过本文的示例代码,你可以学习使用Python爬取NBA球员数据的方法。我们使用了requests库发送HTTP请求,lxml库进行HTML解析,以及XPath表达式提取需要的数据。最后将结果保存到文件中。这个示例可以帮助你了解爬虫的基本原理和操作步骤,同时也能够获取到有关NBA球员的数据。希望本文对你理解和掌握Python爬虫技术有所帮助。

这篇关于【小白必看】Python爬取NBA球员数据示例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:https://blog.csdn.net/qq_33681891/article/details/131974796
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/322860

相关文章

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

使用Spring Cache本地缓存示例代码

《使用SpringCache本地缓存示例代码》缓存是提高应用程序性能的重要手段,通过将频繁访问的数据存储在内存中,可以减少数据库访问次数,从而加速数据读取,:本文主要介绍使用SpringCac... 目录一、Spring Cache简介核心特点:二、基础配置1. 添加依赖2. 启用缓存3. 缓存配置方案方案

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变

使用Python的requests库来发送HTTP请求的操作指南

《使用Python的requests库来发送HTTP请求的操作指南》使用Python的requests库发送HTTP请求是非常简单和直观的,requests库提供了丰富的API,可以发送各种类型的HT... 目录前言1. 安装 requests 库2. 发送 GET 请求3. 发送 POST 请求4. 发送

python 线程池顺序执行的方法实现

《python线程池顺序执行的方法实现》在Python中,线程池默认是并发执行任务的,但若需要实现任务的顺序执行,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋... 目录方案一:强制单线程(伪顺序执行)方案二:按提交顺序获取结果方案三:任务间依赖控制方案四:队列顺序消

Python异步编程之await与asyncio基本用法详解

《Python异步编程之await与asyncio基本用法详解》在Python中,await和asyncio是异步编程的核心工具,用于高效处理I/O密集型任务(如网络请求、文件读写、数据库操作等),接... 目录一、核心概念二、使用场景三、基本用法1. 定义协程2. 运行协程3. 并发执行多个任务四、关键

从基础到进阶详解Python条件判断的实用指南

《从基础到进阶详解Python条件判断的实用指南》本文将通过15个实战案例,带你大家掌握条件判断的核心技巧,并从基础语法到高级应用一网打尽,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录​引言:条件判断为何如此重要一、基础语法:三行代码构建决策系统二、多条件分支:elif的魔法三、

Python WebSockets 库从基础到实战使用举例

《PythonWebSockets库从基础到实战使用举例》WebSocket是一种全双工、持久化的网络通信协议,适用于需要低延迟的应用,如实时聊天、股票行情推送、在线协作、多人游戏等,本文给大家介... 目录1. 引言2. 为什么使用 WebSocket?3. 安装 WebSockets 库4. 使用 We

python中的显式声明类型参数使用方式

《python中的显式声明类型参数使用方式》文章探讨了Python3.10+版本中类型注解的使用,指出FastAPI官方示例强调显式声明参数类型,通过|操作符替代Union/Optional,可提升代... 目录背景python函数显式声明的类型汇总基本类型集合类型Optional and Union(py

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十