ICCV 2021 | 新的去雪数据集CSD开源!更快更有效的去雪网络HDCW-Net

2023-11-01 11:40

本文主要是介绍ICCV 2021 | 新的去雪数据集CSD开源!更快更有效的去雪网络HDCW-Net,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点击下方卡片,关注“CVer”公众号

AI/CV重磅干货,第一时间送达

ALL Snow Removed: Single Image Desnowing Algorithm Using Hierarchical Dual-tree Complex Wavelet Representation and Contradict Channel Loss

95f5e16c10d0b5bbaf0d2be4f43aeff3.png

论文链接:

https://openaccess.thecvf.com/content/ICCV2021/papers/Chen_ALL_Snow_Removed_Single_Image_Desnowing_Algorithm_Using_Hierarchical_Dual-Tree_ICCV_2021_paper.pdf

数据集链接:

https://ccncuedutw-my.sharepoint.com/:u:/g/personal/104501531_cc_ncu_edu_tw/EfCooq0sZxxNkB7F8HgCyKwB-sJQtVE59_Gpb9soatYi5A?e=5NjDhb

代码链接:

https://github.com/weitingchen83/ICCV2021-Single-Image-Desnowing-HDCWNet

简介

最近因为科研的需要,开始找寻去雪网络的相关文章,发现去雪的文章相对于去雾或是去雨来说相对少,而我找到最近台湾大学以及华硕电脑在今年ICCV发表了一个大型去雪数据集以及新的去雪网络HDCW-Net,在各项数据集达到SOTA的性能,并且在执行速度上优于现有的算法,相当有趣,所以写了一帖文章供小伙伴们参考。

此外,我也发现这个团队去年也有在ECCV'20发表另一篇去雪的工作,有兴趣可以参考:https://link.springer.com/chapter/10.1007/978-3-030-58589-1_45

Single Image Desnowing (单张影像去雪),字面上就是给予一张含有雪的场景,透过影像重建的技术,将影像中的雪以及受损的影像内容还原回来。此任务由于大型数据集深度学习的进步,在近年有着相当大的突破,例如著名的JSTASR [1]以及DeSnowNet [2]的提出。然而在现今的去雪算法当中仍然存在着下面的问题:

  1. 对于真实世界场景的鲁棒性:因为雪的型态多样且复杂,通常包含snow streak, snow flake, 以及veiling effect,除此之外,雪的大小差异也相当大,而尺寸较大的雪现有的网络无法有效地去除。

  2. 现有的数据集不能反映出真实世界的场景:在现有的数据集当中,如:Snow-100K [1]和RWD [2],都缺少了snow streaks,使得网络在训练时没办法学习到更全面雪的信息。

方法

针对上述问题,提出了一个基于Dual-tree Wavelet Transform (DTCWT)的阶层式(Hierarchical Architecture)网络。DTCWT是Discrete Wavelet Transform的改良版,他拥有较好的方向性,能够有效的捕捉不同方向的特征,而雪通常含有不同的方向,如下图所示,相比于传统的DWT,DTCWT可以更有效地将不同方向的雪去做型态上的捕捉。此外,为了能更有效地去解决不同大小雪的问题,使用阶层式的分解方式,可以将形状较大的雪去做切割,让较大的雪可以分解至每一个子频带,使得尺寸问题可以被解决。

05fb58ca8824d47287efbfefef51e633.png

3840d693829e2684fa6512ed824017e1.png

除了上面的网络设计外,还提出了一个新型的特征称为Contradict Channel (CC),此特征可用于雪的场景作为一种用来判断图片是否有残余的雪的特征。此特征可以被定义如下:

cf17e45451286f81c325945636b2f532.png

8fdf9fb2026bf2bcb91cea551ff788e1.png

相较于干净的影像,当影像含有残存的雪时,contradcit channel的值就会较大,接近1。运用这个特性,我们就可以利用它作为一个还原影像是否残留雪的指针,去帮助网络训练。

a0c0859e0a18e81e0fa8835140929b18.png

此外,针对snow streak的部分,论文当中也提出了一个新的大型数据集Comprehensive Snow Dataset (CSD),供这个领域的研究者使用。

d66d0a9c1912edd3af989a8fc90bca0b.png

实验结果

论文当中做了相当多实验去验证有效性

首先是消融实验(Ablation Study):

● 针对不同的feature extraction方式做比较:

30e34af32d063ce265a20b48b5a61bbf.png

上表当中证明了,对比于其他feature extraction方式,使用DTCWT对于网络而言是一种有效的方式去做雪的特征萃取。

● 使用阶层式对于网络效能的提升:

c388ea5fa77cd1c01ef437fa2c480310.png

而此实验验证了,使用阶层式的分解方式对于去雪的效能也是有显着的帮助的,但过度的分解可能会带来效能的降低。

● 使用contradict channel对于去雪的效能比较:

5b832c0a5db8ce33101fc9bea13ba8b6.png

Contradict Channel的有效性也在此实验被验证,使用contradict channel做为计算loss的方式能够有效地增强去雪的效能。

● 与现有方法的比较:

ccb78a0f1752a91a84f689e39982dd75.png

5c68aa4e6cc319ec4a685e67bcd909c6.png

● 计算复杂度比较:

67b999b779cdd639dab1fcaa65202d10.png

而提出的算法在去雪效果以及计算复杂度也明显优于现有的去雪网络,在单张影像去雪工作又往前进了一步。

结语

读完这篇文章后,有两个特点非常值得学习

  1. 使用DTCWT做为特征的萃取的工具搭配阶层式的分解似乎对于去雪工作有着不错的效果。

  1. 除了传统的dark channel以及bright channel外,contradict channel对于雪来说是一个有效评估的特征。

参考文献

[1] Chen, W. T., Fang, H. Y., Ding, J. J., Tsai, C. C., & Kuo, S. Y. (2020, August). JSTASR: Joint size and transparency-aware snow removal algorithm based on modified partial convolution and veiling effect removal. In European Conference on Computer Vision (pp. 754-770). Springer, Cham.

[2] Liu, Y. F., Jaw, D. W., Huang, S. C., & Hwang, J. N. (2018). DesnowNet: Context-aware deep network for snow removal. IEEE Transactions on Image Processing, 27(6), 3064-3073.

[3] Chen, W. T., Fang, H. Y., Hsieh, C. L., Tsai, C. C., Chen, I., Ding, J. J., & Kuo, S. Y. (2021). ALL Snow Removed: Single Image Desnowing Algorithm Using Hierarchical Dual-Tree Complex Wavelet Representation and Contradict Channel Loss. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 4196-4205).

ICCV和CVPR 2021论文和代码下载后台回复:CVPR2021,即可下载CVPR 2021论文和代码开源的论文合集后台回复:ICCV2021,即可下载ICCV 2021论文和代码开源的论文合集后台回复:Transformer综述,即可下载最新的两篇Transformer综述PDF
CVer-去一切交流群成立
扫码添加CVer助手,可申请加入CVer-去一切 微信交流群,方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch和TensorFlow等群。
一定要备注:研究方向+地点+学校/公司+昵称(如去一切+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群▲长按加小助手微信,进交流群
▲点击上方卡片,关注CVer公众号

整理不易,请点赞和在看109df544a8faabc7340dd22da0889029.gif

这篇关于ICCV 2021 | 新的去雪数据集CSD开源!更快更有效的去雪网络HDCW-Net的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/322703

相关文章

C#借助Spire.XLS for .NET实现在Excel中添加文档属性

《C#借助Spire.XLSfor.NET实现在Excel中添加文档属性》在日常的数据处理和项目管理中,Excel文档扮演着举足轻重的角色,本文将深入探讨如何在C#中借助强大的第三方库Spire.... 目录为什么需要程序化添加Excel文档属性使用Spire.XLS for .NET库实现文档属性管理Sp

MySQL快速复制一张表的四种核心方法(包括表结构和数据)

《MySQL快速复制一张表的四种核心方法(包括表结构和数据)》本文详细介绍了四种复制MySQL表(结构+数据)的方法,并对每种方法进行了对比分析,适用于不同场景和数据量的复制需求,特别是针对超大表(1... 目录一、mysql 复制表(结构+数据)的 4 种核心方法(面试结构化回答)方法 1:CREATE

详解C++ 存储二进制数据容器的几种方法

《详解C++存储二进制数据容器的几种方法》本文主要介绍了详解C++存储二进制数据容器,包括std::vector、std::array、std::string、std::bitset和std::ve... 目录1.std::vector<uint8_t>(最常用)特点:适用场景:示例:2.std::arra

Android使用java实现网络连通性检查详解

《Android使用java实现网络连通性检查详解》这篇文章主要为大家详细介绍了Android使用java实现网络连通性检查的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录NetCheck.Java(可直接拷贝)使用示例(Activity/Fragment 内)权限要求

MySQL中的DELETE删除数据及注意事项

《MySQL中的DELETE删除数据及注意事项》MySQL的DELETE语句是数据库操作中不可或缺的一部分,通过合理使用索引、批量删除、避免全表删除、使用TRUNCATE、使用ORDERBY和LIMI... 目录1. 基本语法单表删除2. 高级用法使用子查询删除删除多表3. 性能优化策略使用索引批量删除避免

MySQL 数据库进阶之SQL 数据操作与子查询操作大全

《MySQL数据库进阶之SQL数据操作与子查询操作大全》本文详细介绍了SQL中的子查询、数据添加(INSERT)、数据修改(UPDATE)和数据删除(DELETE、TRUNCATE、DROP)操作... 目录一、子查询:嵌套在查询中的查询1.1 子查询的基本语法1.2 子查询的实战示例二、数据添加:INSE

Linux服务器数据盘移除并重新挂载的全过程

《Linux服务器数据盘移除并重新挂载的全过程》:本文主要介绍在Linux服务器上移除并重新挂载数据盘的整个过程,分为三大步:卸载文件系统、分离磁盘和重新挂载,每一步都有详细的步骤和注意事项,确保... 目录引言第一步:卸载文件系统第二步:分离磁盘第三步:重新挂载引言在 linux 服务器上移除并重新挂p

使用MyBatis TypeHandler实现数据加密与解密的具体方案

《使用MyBatisTypeHandler实现数据加密与解密的具体方案》在我们日常的开发工作中,经常会遇到一些敏感数据需要存储,比如用户的手机号、身份证号、银行卡号等,为了保障数据安全,我们通常会对... 目录1. 核心概念:什么是 TypeHandler?2. 实战场景3. 代码实现步骤步骤 1:定义 E

使用C#导出Excel数据并保存多种格式的完整示例

《使用C#导出Excel数据并保存多种格式的完整示例》在现代企业信息化管理中,Excel已经成为最常用的数据存储和分析工具,从员工信息表、销售数据报表到财务分析表,几乎所有部门都离不开Excel,本文... 目录引言1. 安装 Spire.XLS2. 创建工作簿和填充数据3. 保存为不同格式4. 效果展示5

Python多任务爬虫实现爬取图片和GDP数据

《Python多任务爬虫实现爬取图片和GDP数据》本文主要介绍了基于FastAPI开发Web站点的方法,包括搭建Web服务器、处理图片资源、实现多任务爬虫和数据可视化,同时,还简要介绍了Python爬... 目录一. 基于FastAPI之Web站点开发1. 基于FastAPI搭建Web服务器2. Web服务