介绍家乡的html源代码_Optical Flow介绍与代码实现

2023-11-01 11:20

本文主要是介绍介绍家乡的html源代码_Optical Flow介绍与代码实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

f25ef6bd860aae8ecdc356970b19904c.png

Optical Flow介绍与代码实现

介绍

首先我们先来介绍一下Optical Flow是个什么东西, 在浏览器的搜索框框里面我们输入"Optical flow"可以看到维基百科的解释:

光流(Optical flow or optic flow)是关于视域中的物体运动检测中的概念。用来描述相对于观察者的运动所造成的观测目标、表面或边缘的运动。

Optical flow 是一个概念, 描述的是一个相对于观测者的运动,这个运动是观测造成的,就是说,我们眼睛的目光和物体保持相对静止就没有光流运动啦. 似乎是个物理上面的东西, 这个网址 "http://people.csail.mit.edu/celiu/motionAnnotation/whatismotion.html"提出了一个问题 ":

What is motion?"对两个观点进行了辩论:

  • 1, " motion is the physical movement of pixels, and therefore motion has to be measured in a physical way. "
  • 2, " motion is human percept--motion is what we perceive in our brain, something we can sense and communicate."
  • 然后贴了下面这个图

5a70d29f44c3bd9d1a8e8276f860ed1f.png
Fig1 http://www. ritsumei.ac.jp/~akitaok a/index-e.html

我们人类可以从上面的静态图中感受到运动! 由此联想到计算机视觉系统是如何做的?

If the ultimate goal of computer vision is to let the computer see what humans perceive, then it is certainly the right way to let humans teach computer how to see the world. Our human-assisted motion annotation serves exactly for this purpose. Indeed, we shall show you that (a) humans' annotations are very consistent, and (b) human's annotations are consistent with other ground-truth data.

很容易发现, 只有在我们的眼睛(准确的是目光)移动的时候,我们才能感受到运动,那么眼睛移动引起了什么变化喃, 貌似有亮度, (角度)视角,这样子我们岂不是就可以估计相对运动啦. 是的嘛, 光流就是来估计运动的的嘛,,(这么简单的原理,为什么我就没有提出来喃 233).

言归正传

光流的概念是Gibson在1950年首先提出来的。它是空间运动物体在观察成像平面上的像素运动的瞬时速度,是利用图像序列中像素在时间域上的变化以及相邻帧之间的相关性来找到上一帧跟当前帧之间存在的对应关系,从而计算出相邻帧之间物体的运动信息的一种方法。一般而言,光流是由于场景中前景目标本身的移动、相机的运动,或者两者的共同运动所产生的。

当人的眼睛观察运动物体时,物体的景象在人眼的视网膜上形成一系列连续变化的图像,这一系列连续变化的信息不断“流过”视网膜(即图像平面),好像一种光的“流”,故称之为光流(optical flow)。光流表达了图像的变化,由于它包含了目标运动的信息,因此可被观察者用来确定目标的运动情况。研究光流场的目的就是为了从图片序列中近似得到不能直接得到的运动场。运动场,其实就是物体在三维真实世界中的运动;光流场,是运动场在二维图像平面上(人的眼睛或者摄像头)的投影。那通俗的讲就是通过一个图片序列,把每张图像中每个像素的运动速度和运动方向找出来就是光流场。那怎么找呢?咱们直观理解肯定是:第t帧的时候A点的位置是(x1, y1),那么我们在第t+1帧的时候再找到A点,假如它的位置是(x2,y2),那么我们就可以确定A点的运动了:

(ux, vy) = (x2, y2) - (x1,y1)。

那怎么知道第t+1帧的时候A点的位置呢? 这就存在很多的光流计算方法了。 1981年,Horn和Schunck创造性地将二维速度场与灰度相联系,引入光流约束方程,得到光流计算的基本算法。人们基于不同的理论基础提出各种光流计算方法,算法性能各有不同。Barron等人对多种光流计算技术进行了总结,按照理论基础与数学方法的区别把它们分成四种:基于梯度的方法、基于匹配的方法、基于能量的方法、基于相位的方法。近年来神经动力学方法也颇受学者重视。

贴自 https:// blog.csdn.net/zouxy09/a rticle/details/8683859

光流的测量

101adeb241d9ae20ac5dcb81f1926b9c.png
贴自 https:// zh.wikipedia.org/wiki/% E5%85%89%E6%B5%81%E6%B3%95

几种测定方法

这里列举几个OpenCv实现了的测定算法:

  • Lucas–Kanade method

Lucas-Kanade方法是由Bruce D. Lucas和Takeo Kanade开发的一种广泛使用的光流估计差分方法.它假设流在所考虑的像素的局部邻域中基本恒定,并且通过最小二乘准则解出该邻域中的所有像素的基本光流方程. openCV 的API是 calcOpticalFlowPyrLK.

https:// en.wikipedia.org/wiki/L ucas%E2%80%93Kanade_method
点下面这个链接,不错的理论解释(中文) http:// image.sciencenet.cn/old data/kexue.com.cn/upload/blog/file/2010/9/2010929122517964628.pdf
  • The Gunnar-Farneback optical flow

用Gunnar Farneback 的算法计算稠密光流(即图像上所有像素点的光流都计算出来)。它的相关论文是:"Two-Frame Motion Estimation Based on PolynomialExpansion"

opencv 的API 是 calcOpticalFlowFarneback.

论文地址: http://www. diva-portal.org/smash/g et/diva2:273847/FULLTEXT01.pdf
  • block matching method

依赖于块匹配方法,OpenCv的API 是: CalcOpticalFlowBM.

  • Horn–Schunck method 用Horn-Schunck 的算法计算稠密光流。OpenCv的API是 CalcOpticalFlowHS.
  • SimpleFlow
项目网站(源代码) http:// graphics.berkeley.edu/p apers/Tao-SAN-2012-05/

OpenCv的API是 calcOpticalFlowSF.

代码演示

对于代码,这里只演示计算量更少,更加适用于SLAM系统的Lucas–Kanade method. 我们首先需要使用 cv2.goodFeaturesToTrack()来寻找角点,然后在使用Lucas–Kanade method进行运动跟踪。

python

#!/usr/bin/pythonimport numpy as np
import cv2# opencv-3.1.0/samples/data/768x576.avi
cap = cv2.VideoCapture('768x576.avi')# params for ShiTomasi corner detection
feature_params = dict( maxCorners = 100,qualityLevel = 0.3,minDistance = 7,blockSize = 7 )# Parameters for lucas kanade optical flow
lk_params = dict( winSize  = (15,15),maxLevel = 2,criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))# Create some random colors
color = np.random.randint(0,255,(100,3))# Take first frame and find corners in it
ret, old_frame = cap.read()
old_gray = cv2.cvtColor(old_frame, cv2.COLOR_BGR2GRAY)
p0 = cv2.goodFeaturesToTrack(old_gray, mask = None, **feature_params)# Create a mask image for drawing purposes
mask = np.zeros_like(old_frame)while(1):ret,frame = cap.read()if ret is True:print retframe_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)# calculate optical flowp1, st, err = cv2.calcOpticalFlowPyrLK(old_gray, frame_gray, p0, None, **lk_params)# Select good pointsgood_new = p1[st==1]good_old = p0[st==1]# draw the tracksfor i,(new,old) in enumerate(zip(good_new,good_old)):a,b = new.ravel()c,d = old.ravel()mask = cv2.line(mask, (a,b),(c,d), color[i].tolist(), 2)frame = cv2.circle(frame,(a,b),5,color[i].tolist(),-1)img = cv2.add(frame,mask)cv2.imshow('frame',img)k = cv2.waitKey(30) & 0xffif k == 27:break# Now update the previous frame and previous pointsold_gray = frame_gray.copy()p0 = good_new.reshape(-1,1,2)else:breakcv2.destroyAllWindows()
cap.release()

效果图

312a46d05c619b02ca4d5b46b672e347.png

这个理论由于基于一个很强的亮度不变的假设,因此具有较大的局限性,只能用于估计很小的运动。

参考文献

* Application of local optical flow methods to high-velocity free-surface flows: Validation and application to stepped chutes :http://staff.civil.uq.edu.au/h.chanson/reprints/Zhang_Chanson_etfs_2018.pdf (介绍了主流的几种光流算法)

* https://blog.csdn.net/zouxy09/article/details/8683859(光流Optical Flow介绍与OpenCV实现)


*http://image.sciencenet.cn/olddata/kexue.com.cn/upload/blog/file/2010/9/2010929122517964628.pdf (Lucas–Kanade method的中文理论推导)http://vision.middlebury.edu/flow/floweval-ijcv2011.pdf (同一)

这篇关于介绍家乡的html源代码_Optical Flow介绍与代码实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/322601

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

vite搭建vue3项目的搭建步骤

《vite搭建vue3项目的搭建步骤》本文主要介绍了vite搭建vue3项目的搭建步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1.确保Nodejs环境2.使用vite-cli工具3.进入项目安装依赖1.确保Nodejs环境

Nginx搭建前端本地预览环境的完整步骤教学

《Nginx搭建前端本地预览环境的完整步骤教学》这篇文章主要为大家详细介绍了Nginx搭建前端本地预览环境的完整步骤教学,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录项目目录结构核心配置文件:nginx.conf脚本化操作:nginx.shnpm 脚本集成总结:对前端的意义很多

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配