【tensorflow】windows下搭建tensorflow-slim网络进行目标分类(安装配置+使用教程+问题总结)

本文主要是介绍【tensorflow】windows下搭建tensorflow-slim网络进行目标分类(安装配置+使用教程+问题总结),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

0.(可选)下载cuda,cudnn

若是想GPU跑深度学习,有英伟达显卡
关于版本的选择,要关注自身显卡驱动能支持的最高CUDA版本。
下载cuda地址:
CUDA10.1版本:https://developer.nvidia.com/cuda-10.1-download-archive-base
下载cudnn
cuDNN是一个SDK,是一个专门用于神经网络的加速包,注意,它跟我们的CUDA没有一一对应的关系,即每一个版本的CUDA可能有好几个版本的cuDNN与之对应,但一般有一个最新版本的cuDNN版本与CUDA对应更好。
这里下载的是cudnn7.6.5,官网地址:https://developer.nvidia.com/cudnn
下载完压缩包并解压:里面有3个文件夹:
在这里插入图片描述
复制,并粘贴到cuda的安装目录,
一般是:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0
然后合并:
在这里插入图片描述

1.windows下安装anaconda

官网下载anaconda
https://www.anaconda.com/products/individual
一般下载的都是最新版本

安装anaconda
点击安装程序安装
在这里插入图片描述
上面是添加path系统环境变量,不勾选就需要自己来手动添加。可以认真看一下英文注解;
下面勾选就是把anaconda位置作为默认的python3的地址;

若没有勾选环境变量,手动添加可以参考以下(版本不同可能会不一样):
在这里插入图片描述
cmd打开终端,输入conda --version检验有没有安装成功

2.创建虚拟环境:

打开Anaconda Prompt:
在这里插入图片描述
更换国内源

conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes

下载一个python为3.7的虚拟环境:
输入:conda create -n tensorflow python=3.7
等待下载完毕,(虚拟环境在anaconda目录下envs目录下)
在这里插入图片描述

3.下载pycharm

http://www.jetbrains.com/pycharm/download/#section=windows

4.下载tensorflow-slim模块

github地址:https://github.com/tensorflow/models
若下载速度过慢,可采用gitee的方式下载:
1.将需要的tenforflow资源fork到自己的GitHub账号上;
在这里插入图片描述
2.注册gitee账号,关联gitee和github账号
3.选择添加仓的方式添加GitHub的fork资源:

在这里插入图片描述在这里插入图片描述然后下载tensorflow-models软件包

5.使用pycharm打开tensorflow-slim

slim项目的相对位置:\research\slim
在这里插入图片描述

6.设置虚拟环境:

打开pycharm上File -> settings:
在这里插入图片描述
选择到Project:slim 下的 Project Interpreter,可以不采用原有的环境,选择自己创建的虚拟环境
在这里插入图片描述在这里插入图片描述在这里插入图片描述然后找到自己创建的模拟环境的路径
4ubmV0L3NhemFzcw==,size_16,color_FFFFFF,t_70)
然后确认即可。

若是该虚拟环境没有安装tensroflow,可以pip下载:
在pycharm窗口的下方点击Terminal,然后利用pip下载tensorflow:

pip install tensorflow-gpu==2.0 -i https://pypi.tuna.tsinghua.edu.cn/simple

在这里插入图片描述

下载完之后就可以在Project Interpreter内找到已经下载的包:在这里插入图片描述

7.tensorflow模块的简单说明:

待更新······

8.在运行tensorflow的一些问题总结:

1.AttributeError: module ‘tensorflow’ has no attribute ‘Session’
原因:在新的Tensorflow 2.0版本中已经移除了Session这一模块
解决方案:

tf.Session() 更换为 tf.compat.v1.Session()

2.ImportError: No module named ‘contextlib2’

解决方案:
下载contextlib2,可以直接在pycharm上下载:

在这里插入图片描述在这里插入图片描述或者终端下载:pip install contextlib2

3.ImportError: No module named 'PIL'

解决方案:
终端下载:pip install pillow

注:下载一般突然结束,并出现大量红字,应该是超时的问题,一般来说重新运行指令即可继续下载,若速度过满或文件过大造成反复超时,可采用国内源,

pip install pillow -i https://pypi.doubanio.com/simple/

4.AttributeError: module 'tensorflow' has no attribute 'flags'

类似:tf.flags.DEFINE_float,tf.flags.DEFINE_string会报错,找不到flags;
原因:tf.flags.DEFINE_float()是tensorflow1的用法,在tensorflow2里不可直接这样写,需要加上.compat.v1.app
解决方案:
整体上改为:tf.compat.v1.app.flags.DEFINE_float
在这里插入图片描述
在这里插入图片描述

5.AttributeError: module 'tensorflow' has no attribute 'gfile'

跳转之后这里出了问题:

  if not tf.gfile.Exists(dataset_dir):tf.gfile.MakeDirs(dataset_dir)

问题产生的原因:在当前的版本中,gfile已经定义在io包的file_io.py中。
解决方法:修改如下:

  if not tf.io.gfile.exists(dataset_dir):tf.io.gfile.makeDirs(dataset_dir)

还要注意函数大小写!!

这篇关于【tensorflow】windows下搭建tensorflow-slim网络进行目标分类(安装配置+使用教程+问题总结)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/322576

相关文章

Windows系统宽带限制如何解除?

《Windows系统宽带限制如何解除?》有不少用户反映电脑网速慢得情况,可能是宽带速度被限制的原因,只需解除限制即可,具体该如何操作呢?本文就跟大家一起来看看Windows系统解除网络限制的操作方法吧... 有不少用户反映电脑网速慢得情况,可能是宽带速度被限制的原因,只需解除限制即可,具体该如何操作呢?本文

Python中模块graphviz使用入门

《Python中模块graphviz使用入门》graphviz是一个用于创建和操作图形的Python库,本文主要介绍了Python中模块graphviz使用入门,具有一定的参考价值,感兴趣的可以了解一... 目录1.安装2. 基本用法2.1 输出图像格式2.2 图像style设置2.3 属性2.4 子图和聚

windows和Linux使用命令行计算文件的MD5值

《windows和Linux使用命令行计算文件的MD5值》在Windows和Linux系统中,您可以使用命令行(终端或命令提示符)来计算文件的MD5值,文章介绍了在Windows和Linux/macO... 目录在Windows上:在linux或MACOS上:总结在Windows上:可以使用certuti

CentOS和Ubuntu系统使用shell脚本创建用户和设置密码

《CentOS和Ubuntu系统使用shell脚本创建用户和设置密码》在Linux系统中,你可以使用useradd命令来创建新用户,使用echo和chpasswd命令来设置密码,本文写了一个shell... 在linux系统中,你可以使用useradd命令来创建新用户,使用echo和chpasswd命令来设

Python使用Matplotlib绘制3D曲面图详解

《Python使用Matplotlib绘制3D曲面图详解》:本文主要介绍Python使用Matplotlib绘制3D曲面图,在Python中,使用Matplotlib库绘制3D曲面图可以通过mpl... 目录准备工作绘制简单的 3D 曲面图绘制 3D 曲面图添加线框和透明度控制图形视角Matplotlib

Pandas中统计汇总可视化函数plot()的使用

《Pandas中统计汇总可视化函数plot()的使用》Pandas提供了许多强大的数据处理和分析功能,其中plot()函数就是其可视化功能的一个重要组成部分,本文主要介绍了Pandas中统计汇总可视化... 目录一、plot()函数简介二、plot()函数的基本用法三、plot()函数的参数详解四、使用pl

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

解决IDEA报错:编码GBK的不可映射字符问题

《解决IDEA报错:编码GBK的不可映射字符问题》:本文主要介绍解决IDEA报错:编码GBK的不可映射字符问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录IDEA报错:编码GBK的不可映射字符终端软件问题描述原因分析解决方案方法1:将命令改为方法2:右下jav

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令