SS-nbt和FCB模块实现

2023-11-01 11:10
文章标签 模块 实现 nbt ss fcb

本文主要是介绍SS-nbt和FCB模块实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

    • 前言
    • LEDNet中的SS-nbt模块
    • LRNNET中的FCB模块

前言

在这里插入图片描述
论文链接:LRNNET - 轻量级实时语义分割算法
在这里插入图片描述

LEDNet中的SS-nbt模块

在这里插入图片描述

import torch
import torch.nn as nn
import torch.nn.functional as F
def Split(x):c = int(x.size()[1])c1 = round(c * 0.5)x1 = x[:, :c1, :, :].contiguous()x2 = x[:, c1:, :, :].contiguous()return x1, x2 def Merge(x1,x2):return torch.cat((x1,x2),1) def Channel_shuffle(x, groups):batchsize, num_channels, height, width = x.data.size()channels_per_group = num_channels // groups#reshapex = x.view(batchsize, groups,channels_per_group, height, width)x = torch.transpose(x, 1, 2).contiguous()#flattenx = x.view(batchsize, -1, height,width)return xclass SS_nbt_module(nn.Module):def __init__(self, chann, dropprob, dilated):        super().__init__()oup_inc = chann//2#dwself.conv3x1_1_l = nn.Conv2d(oup_inc, oup_inc, (3,1), stride=1, padding=(1,0), bias=True)self.conv1x3_1_l = nn.Conv2d(oup_inc, oup_inc, (1,3), stride=1, padding=(0,1), bias=True)self.bn1_l = nn.BatchNorm2d(oup_inc, eps=1e-03)self.conv3x1_2_l = nn.Conv2d(oup_inc, oup_inc, (3,1), stride=1, padding=(1*dilated,0), bias=True, dilation = (dilated,1))self.conv1x3_2_l = nn.Conv2d(oup_inc, oup_inc, (1,3), stride=1, padding=(0,1*dilated), bias=True, dilation = (1,dilated))self.bn2_l = nn.BatchNorm2d(oup_inc, eps=1e-03)#dwself.conv3x1_1_r = nn.Conv2d(oup_inc, oup_inc, (3,1), stride=1, padding=(1,0), bias=True)self.conv1x3_1_r = nn.Conv2d(oup_inc, oup_inc, (1,3), stride=1, padding=(0,1), bias=True)self.bn1_r = nn.BatchNorm2d(oup_inc, eps=1e-03)self.conv3x1_2_r = nn.Conv2d(oup_inc, oup_inc, (3,1), stride=1, padding=(1*dilated,0), bias=True, dilation = (dilated,1))self.conv1x3_2_r = nn.Conv2d(oup_inc, oup_inc, (1,3), stride=1, padding=(0,1*dilated), bias=True, dilation = (1,dilated))self.bn2_r = nn.BatchNorm2d(oup_inc, eps=1e-03)       self.relu = nn.ReLU(inplace=True)self.dropout = nn.Dropout2d(dropprob)# self.channel_shuffle = PermutationBlock(2)def forward(self, x):residual = xx1, x2 = Split(x)output1 = self.conv3x1_1_l(x1)output1 = self.relu(output1)output1 = self.conv1x3_1_l(output1)output1 = self.bn1_l(output1)output1_mid = self.relu(output1)output2 = self.conv1x3_1_r(x2)output2 = self.relu(output2)output2 = self.conv3x1_1_r(output2)output2 = self.bn1_r(output2)output2_mid = self.relu(output2)output1 = self.conv3x1_2_l(output1_mid)output1 = self.relu(output1)output1 = self.conv1x3_2_l(output1)output1 = self.bn2_l(output1)output2 = self.conv1x3_2_r(output2_mid)output2 = self.relu(output2)output2 = self.conv3x1_2_r(output2)output2 = self.bn2_r(output2)if (self.dropout.p != 0):output1 = self.dropout(output1)output2 = self.dropout(output2)out = Merge(output1, output2)out = F.relu(residual + out)# out = self.channel_shuffle(out)   ### channel shuffleout = Channel_shuffle(out, 2)   ### channel shufflereturn out# return    ### channel shuffle
if __name__ == '__main__':ss_nbt = SS_nbt_module(256, 0.2, 6).cuda()input = torch.randn([1, 256, 14, 14]).cuda()y = ss_nbt(input)print(y.shape)

LRNNET中的FCB模块

import torch
import torch.nn as nn
import torch.nn.functional as F
def Split(x):c = int(x.size()[1])c1 = round(c * 0.5)x1 = x[:, :c1, :, :].contiguous()x2 = x[:, c1:, :, :].contiguous()return x1, x2 def Merge(x1,x2):return torch.cat((x1,x2),1) def Channel_shuffle(x, groups):batchsize, num_channels, height, width = x.data.size()channels_per_group = num_channels // groups#reshapex = x.view(batchsize, groups,channels_per_group, height, width)x = torch.transpose(x, 1, 2).contiguous()#flattenx = x.view(batchsize, -1, height,width)return xclass FCB_module(nn.Module):def __init__(self, chann, dropprob, dilated):        super().__init__()oup_inc = chann//2#dwself.conv3x1_1_l = nn.Conv2d(oup_inc, oup_inc, (3,1), stride=1, padding=(1,0), bias=True)self.conv1x3_1_l = nn.Conv2d(oup_inc, oup_inc, (1,3), stride=1, padding=(0,1), bias=True)self.bn1_l = nn.BatchNorm2d(oup_inc, eps=1e-03)#dwself.conv3x1_1_r = nn.Conv2d(oup_inc, oup_inc, (3,1), stride=1, padding=(1,0), bias=True)self.conv1x3_1_r = nn.Conv2d(oup_inc, oup_inc, (1,3), stride=1, padding=(0,1), bias=True)self.bn1_r = nn.BatchNorm2d(oup_inc, eps=1e-03)#dsself.conv3x3 = nn.Conv2d(chann, chann, (3,3), stride=1, padding=(1*dilated, 1*dilated), bias=True, dilation = (dilated, dilated))self.conv1x1 = nn.Conv2d(chann, chann, (1,1), stride=1)self.bn2 = nn.BatchNorm2d(chann, eps=1e-03)       self.relu = nn.ReLU(inplace=True)self.dropout = nn.Dropout2d(dropprob)# self.channel_shuffle = PermutationBlock(2)def forward(self, x):residual = xx1, x2 = Split(x)output1 = self.conv3x1_1_l(x1)output1 = self.relu(output1)output1 = self.conv1x3_1_l(output1)output1 = self.bn1_l(output1)output1_mid = self.relu(output1)output2 = self.conv1x3_1_r(x2)output2 = self.relu(output2)output2 = self.conv3x1_1_r(output2)output2 = self.bn1_r(output2)output2_mid = self.relu(output2)if (self.dropout.p != 0):output1_mid = self.dropout(output1_mid)output2_mid = self.dropout(output2_mid)   output = Merge(output1_mid, output2_mid)output = F.relu(output)output = self.conv3x3(output)output = self.relu(output)output = self.conv1x1(output)output = self.bn2(output)output = F.relu(residual + output)# out = self.channel_shuffle(out)   ### channel shuffleoutput = Channel_shuffle(output, 2)   ### channel shufflereturn output# return    ### channel shuffle
if __name__ == '__main__':fcb = FCB_module(256, 0.2, 6).cuda()input = torch.randn([1, 256, 14, 14]).cuda()y = fcb(input)print(y.shape)

这篇关于SS-nbt和FCB模块实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/322538

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配

通过React实现页面的无限滚动效果

《通过React实现页面的无限滚动效果》今天我们来聊聊无限滚动这个现代Web开发中不可或缺的技术,无论你是刷微博、逛知乎还是看脚本,无限滚动都已经渗透到我们日常的浏览体验中,那么,如何优雅地实现它呢?... 目录1. 早期的解决方案2. 交叉观察者:IntersectionObserver2.1 Inter

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S