ZYNQ linux下AXI_BRAM的使用方法,PS与PL端数据交互

2023-11-01 02:40

本文主要是介绍ZYNQ linux下AXI_BRAM的使用方法,PS与PL端数据交互,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、AXI总线、AXI接口、AXI协议
总线是一组传输通道,是各种逻辑器件构成的传输数据的通道;接口是一种连接标准,又常被称为物理接口;协议是数据传输的规则。

PS与PL连接方式主要是通过AXI总线进行的。ZYNQ上的总线协议有AXI4, AXI4-Lite, AXI4-Stream三种总线协议。而PS与PL之间的接口(AXI-GP、AXI-HP、AXI-ACP)只支持AXI4与AXI4-Lite这两种总线协议。

2、BRAM简介
Block RAM是PL部分的存储器阵列,就相当于在PL中开辟一片空间来存储数据,通过端口来进行读写。
BRAM设置模式:
1、单端口:通过一个端口对BRAM进行读写。
2、简单双端口:有两个端口连接到BRAM,一个端口只读,一个端口只写
3、真双端口:两个端口都可以对BRAM进行读写。

3、vivado设计
前提:创建好了工程并导入了ZYNQ核

打开AXI GP0 和 AXI GP1的接口
在这里插入图片描述
在这里插入图片描述

将M_AXI_GP0_ACLK连接到FCLK_CLK0
在这里插入图片描述

导入两个BRAM 控制器
在这里插入图片描述

在这里插入图片描述
设置为单端口

在这里插入图片描述

导入一个BRAM
在这里插入图片描述

设置为真双端口模式

在这里插入图片描述
进行设计连接
在这里插入图片描述
进行1的时候需要修改主机从GP0 改为GP1
在这里插入图片描述
最终的生成图
在这里插入图片描述
可以在address editor中查看自动分配的BRAM控制器的地址,不要随意更改地址,因为其他地址可能被其他设备占用了。
axi_bram_ctrl_0 0x40000000
axi_bram_ctrl_1 0x80000000

在这里插入图片描述

接下来生成bit流,将硬件资源导入petlainux中,生成BOOT.BIN 和image.ub

将生成的BOOT.BIN和内核放到板子上,启动系统。

进行编程:


#include <stdio.h>
#include <unistd.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>#define BRAM_CTRL_0 0x40000000
#define BRAM_CTRL_1 0x80000000
#define DATA_LEN    10int main(int argc, char **argv)
{unsigned int *map_base0;unsigned int *map_base1;int fd = open("/dev/mem", O_RDWR | O_SYNC);if (fd < 0) {printf("can not open /dev/mem \n");return (-1);}   printf("/dev/mem is open \n");map_base0 = mmap(NULL, DATA_LEN * 4, PROT_READ | PROT_WRITE, MAP_SHARED, fd, BRAM_CTRL_0);map_base1 = mmap(NULL, DATA_LEN * 4, PROT_READ | PROT_WRITE, MAP_SHARED, fd, BRAM_CTRL_1);if (map_base0 == 0 || map_base1 == 0 ) { printf("NULL pointer\n");}   else {printf("mmap successful\n");}   unsigned long addr;unsigned int content;int i = 0;printf("\nwrite data to bram\n");for (i = 0; i < DATA_LEN; i++) {addr = (unsigned long)(map_base0 + i); content = i + 2;map_base0[i] = content;printf("%2dth data, address: 0x%lx data_write: 0x%x\t\t\n", i, addr, content);}   printf("\nread data from bram\n");for (i = 0; i< DATA_LEN; i++) {addr = (unsigned long)(map_base1 + i); content = map_base1[i];printf("%2dth data, address: 0x%lx data_read: 0x%x\t\t\n", i, addr, content);}   close(fd);munmap(map_base0, DATA_LEN);munmap(map_base1, DATA_LEN);return 0;
}

运行效果
在这里插入图片描述

也可以将BRAM与socket进行联合使用,将PC端的数据发到PS端,PS端放在PL端,PL端再发给PS端,PS端发回PC端。

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <string.h>
#include <fcntl.h>
#define PORT 3333#define BRAM_CTRL0 0x40000000
#define BRAM_CTRL1 0x80000000
#define DATA_LEN   100unsigned int *map_base0;
unsigned int *map_base1;void udp_server(int sockfd)
{socklen_t len;struct sockaddr_in server_addr;int n;int opt = 1;len = sizeof(server_addr);server_addr.sin_family = AF_INET;server_addr.sin_addr.s_addr = htonl(INADDR_ANY);server_addr.sin_port = htons(PORT);setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(opt));if (bind(sockfd, (struct sockaddr *)&server_addr, sizeof(server_addr)) < 0) {printf("can not bind\n");exit(1);}   while (1) {printf("\n========wait for client's request========\n");n = recvfrom(sockfd, map_base0, 1024, 0, (struct sockaddr *)&server_addr, &len);char buf[1024];memcpy(buf, map_base0, 1024);printf("\nreceive client's data: %s\n", buf);sendto(sockfd, map_base0, n, 0, (struct sockaddr *)&server_addr, len);memcpy(buf, map_base1, 1024);printf("\nsend data to client: %s\n", buf);}close(sockfd);
}int main(int argc, char **argv)
{int sockfd, devfd;if ((sockfd = socket(PF_INET, SOCK_DGRAM, 0)) < 0) {printf("create socket false\n");exit(1);}if ((devfd = open("/dev/mem", O_RDWR | O_SYNC)) < 0) {printf("can not open /dev/mem \n");return (-1);}printf("\nopen /dev/mem successful\n");map_base0 = mmap(NULL, DATA_LEN * 4, PROT_READ | PROT_WRITE, MAP_SHARED, devfd, BRAM_CTRL0);map_base1 = mmap(NULL, DATA_LEN * 4, PROT_READ | PROT_WRITE, MAP_SHARED, devfd, BRAM_CTRL1);if (map_base0 ==0 || map_base1 == 0) {printf("NULL pointer \n");}else {printf("mmap successful\n");}udp_server(sockfd);exit(0);
}

最终实现相关效果

在这里插入图片描述

这篇关于ZYNQ linux下AXI_BRAM的使用方法,PS与PL端数据交互的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/319908

相关文章

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

在Linux中改变echo输出颜色的实现方法

《在Linux中改变echo输出颜色的实现方法》在Linux系统的命令行环境下,为了使输出信息更加清晰、突出,便于用户快速识别和区分不同类型的信息,常常需要改变echo命令的输出颜色,所以本文给大家介... 目python录在linux中改变echo输出颜色的方法技术背景实现步骤使用ANSI转义码使用tpu

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Spring Boot中WebSocket常用使用方法详解

《SpringBoot中WebSocket常用使用方法详解》本文从WebSocket的基础概念出发,详细介绍了SpringBoot集成WebSocket的步骤,并重点讲解了常用的使用方法,包括简单消... 目录一、WebSocket基础概念1.1 什么是WebSocket1.2 WebSocket与HTTP

C#中Guid类使用小结

《C#中Guid类使用小结》本文主要介绍了C#中Guid类用于生成和操作128位的唯一标识符,用于数据库主键及分布式系统,支持通过NewGuid、Parse等方法生成,感兴趣的可以了解一下... 目录前言一、什么是 Guid二、生成 Guid1. 使用 Guid.NewGuid() 方法2. 从字符串创建

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合