2016年亚太杯APMCM数学建模大赛B题化学元素对变形钢筋性能的影响求解全过程文档及程序

本文主要是介绍2016年亚太杯APMCM数学建模大赛B题化学元素对变形钢筋性能的影响求解全过程文档及程序,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2016年亚太杯APMCM数学建模大赛

B题 化学元素对变形钢筋性能的影响

原题再现

  热轧带肋钢筋通常被称为变形钢筋,它主要用于钢筋混凝土构件的骨架,在使用中需要一定的机械强度、弯曲和变形性能、制造焊接性。钢中的化学成分是影响热轧钢最终组织性能的基本因素。大多数变形钢筋采用微合金化方法,即在钢中加入昂贵的微量元素(如Mn合金材料、V合金材料等),调整成分比例,提高组织性能。一个好的组成设计可以在保证性能的同时有效地控制生产成本。钢中的Cr元素可以显著提高强度、硬度和耐磨性。当公司使用富含铬的矿山时,液态铁中的铬含量会显著增加。因此,有一个问题:当Cr含量增加时,我们能否减少合金材料的用量以控制成本?

  变形钢筋的抗拉强度、屈服强度和断裂伸长率等性能与C、Mn、S、P、Si、Cr、Mo、Cu、Ni、Alt、V等元素及其他影响因素之间没有明显的相关性,因此,请根据附件1中的数据,应用现代数学和统计方法,模拟变形钢筋性能对化学元素的影响,并优化成分。具体要求如下:

  (1) 分析了影响变形钢筋性能的主要因素和次要因素,如屈服强度、抗拉强度和断裂伸长率,并分析了这些因素之间的相关性。

  (2) 建立了变形钢筋性能与C、Mn、Cr、V、Ni等化学元素之间的影响规律模型。

  (3) 研究了提高Cr含量对变形钢筋性能允许范围内Mn、V等合金材料的还原作用,提出了Mn、V含量等的改性范围,并设计了成分优化方案。
  附件一:某企业近两年的生产数据。其中:本规范按螺纹钢筋直径分类,表中仅有两种产品;每个元素的含量以百分比表示;屈服强度的单位,抗拉强度为MPa,断裂后伸长率以百分比表示。

整体求解过程概述(摘要)

  随着中国钢铁冶炼技术的不断发展,技术人员不仅已经知道了冶金产品中元素的确切配比,而且能够精确控制合金元素的配比。2015年,中国钢铁厂生产了110亿吨钢铁产品,产量居世界第一。对于中国钢铁厂来说,最重要的任务之一是在提高钢铁强度的同时降低成本。由于钢中掺入的元素会在一定程度上影响其性能,因此研究元素的组成比例是解决上述问题的关键。
  首先,本文选取附件1中某企业的生产数据作为统计对象。根据材料的实际性能和生产数据,丢弃不利于得出正确结论的异常数据。然后,为了找出影响钢材性能的主要因素,基于统计产品和服务解决方案(SPSS),采用逐步回归法,以元素C、Mn、S、P、Si、Cr、Mo、Cu、Ni、Alt、V为决定变量,以抗拉强度、屈服强度和伸长率为因变量。
  其次,排除影响钢筋性能的次要因素,保留决定因素,采用逐步多元线性回归分析了变形钢筋性能与化学元素的关系。散点图采用SPSS软件绘制;建立了各种可能的拟合曲线(如指数模型、对数模型、逻辑模型、线性模型),确定了定量曲线关系。研究表明,化学元素的影响既不是简单的线性关系,也不是非线性关系,而是一个复杂的多变量耦合系统。BP神经网络是一种由非线性变换单元组成的前馈网络,能够实现多层前馈神经权值的调整,智能地处理高度非线性的问题。因此,本文利用MATLAB对B.P.神经网络模型进行了设计和修改。该模型对钢的性能和化学元素之间的反射进行了反复训练。根据问题的要求,在训练误差极小的条件下,得到了的数学模型。使用从附件1中提取的系统采样数据对修改后的模型进行检查。通过预测值与实际值的比较,证明了修正模型的高度拟合。
  最后,分析了螺纹钢性能的变化趋势,利用控制变量法,利用MATLAB编制了化学元素组成比例和生产成本的优化程序。

模型假设:

  1) 假设产品1和产品2加工的设备和技术没有显著变化。
  2) 忽略除化学元素组成比例外其他因素对钢力学性能的影响。
  3) 假设在拉伸强度、屈服强度和伸长率的测量实验中,同类试样的形状、尺寸和长度相同。
  4) 假设钢的化学成分不会随时间变化。
  5) 忽略材料机械性能(疲劳性能、耐腐蚀性和耐高温性)对拉伸强度、屈服强度和伸长率的影响。

问题分析:

  研究背景和意义
  热轧带肋钢筋通常被称为变形钢筋,它主要用于钢筋混凝土构件的骨架,在使用中需要一定的机械强度、弯曲和变形性能、制造焊接性。钢中的化学成分是影响热轧钢最终组织性能的基本因素。大多数变形钢筋采用微合金化方法,即在钢中加入昂贵的微量元素(如Mn合金材料、V合金材料等),调整成分比例,提高组织性能。
  抗拉强度是指将绳索、金属丝或结构梁等物体拉到断裂点所需的力。材料的抗拉强度是指在失效(例如断裂)之前所能承受的最大拉伸应力。它反映了材料的抗断裂性能。屈服强度是金属材料屈服行为的极限,即抵抗微塑性变形的能力。如果零件受到的外力大于该强度,则该零件将永久失效,无法恢复。断裂后伸长率是金属材料拉伸断裂后材料的伸长率与原始长度的比值。它反映了指标的塑性变形能力。
  试验表明,在冶炼过程中加入一些昂贵的微量元素,可以显著提高钢材的主要力学性能指标抗拉强度、屈服强度和断裂伸长率。中国是世界上最大的钢铁材料生产国之一,因此降低平均生产成本对国家的环境保护和发展仍有很大好处。在这方面,鞍钢、武钢等大型钢铁生产企业组织了大量的研究人员,对钢材的性能指标进行研究和检验,旨在以最低的成本获得最高的回报。由此可见,元素组成比例的研究对钢铁等相关行业具有重要意义。
  钢中的Cr元素可以显著提高强度、硬度和耐磨性。当工厂使用富含铬的矿山时,液态铁中的铬含量会显著增加。因此,如果能够在Cr含量增加时将昂贵的合金材料如Mn和V的含量降低到允许范围内,工厂将成功地控制成本。本文将建立数学模型来分析和处理某企业提供的生产数据,并解决以下问题:
  1) 找出影响变形钢筋性能的主要因素,如屈服强度、抗拉强度和断裂伸长率,并分析这些因素之间的相关性。
  2) 模拟变形钢筋性能与C、Mn、Cr、V和N等化学元素之间的影响规律。
  3) 研究了提高Cr含量对变形钢筋性能允许范围内Mn、V等合金材料的还原作用,提出了主要元素的含量变化范围和设计成分优化方案。

  问题分析
  变形钢筋的性能与微观结构有关,而微观结构与元素的种类和加工工艺有关。因此,元素类型和含量对变形钢筋性能的影响是一个多元变量的统计回归问题,即多个自变量和多个因变量之间存在映射关系。通过分析映射关系,我们可以从已知的自变量中预测因变量的值,从而建立合金元素类型和含量对变形棒性能的影响模型。
  问题1:附件1中的大量数据被排序和过滤,并且去除了死像素。通过SPSS逐步线性回归分析,分析了各元素对变形钢筋性能的影响及其相互关系。得出了影响该钢性能的主要因素。
  问题2:本部分研究了单个变量与变形钢筋性能的相关性。据调查,化学元素的影响既不是简单的线性关系,也不是非线性关系,而是一个复杂的多变量耦合系统。因此,修改算法和模型是必不可少的。通过BP神经网络和MATLAB编程,得到了一个包含主因子输入层、10个交点的隐层和抗拉强度、屈服强度和断裂伸长率输出层的神经网络模型。控制变量用于逐一分析变量以获得相关性,经过50000次训练后,该相关性具有更高的置信度。
  问题三:这个问题具有很强的现实价值和意义。在回答前两个问题的基础上,添加程序,使用循环语句,将钢的变形强度控制在允许范围内。然后增加Cr含量以最大限度地减少昂贵金属(如Mn和V)的量,从而平衡性能和成本并节约能源。

模型的建立与求解整体论文缩略图

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

全部论文及程序请见下方“ 只会建模 QQ名片” 点击QQ名片即可

程序代码:

部分程序如下:
clear;
load bpnerve1.mat;
Input_layer=Input_layer';
Output_layer=Output_layer';
net=newff(minmax(Input_layer),[10,3],{'tansig','pureli
n'},'trainrp');
net.trainParam.epochs=50000;
net.trainParam.show=2000;
net.trainParam.lr=0.15;
net.trainParam.mc=0.7;
net.trainParam.goal=0.0000001;
net=train(net,Input_layer,Output_layer);
Y=sim(net,Input_layer);
x=[0.22;1.43;0.022;0.03;0.012;0.024;0.027;0.47];
y=sim(net,x)
BP Neural network model of steel 2
clear;
load bpnerve2.mat;
Input_layer2=Input_layer2';
Output_layer2=Output_layer2';
net=newff(minmax(Input_layer2),[10,3],{'tansig','purel
in'},'trainrp');
net.trainParam.epochs=50000;
net.trainParam.show=2000;
net.trainParam.lr=0.15;
net.trainParam.mc=0.7;
net.trainParam.goal=0.0000001;
net=train(net,Input_layer2,Output_layer2);
Y=sim(net,Input_layer2);
x=[0.21;1.35;0.02;0.033;0.5;0.46;0.03;0.035];
y=sim(net,x)
Optimization algorithm among Cr,Mn and V of steel 1
clear;
load bpnerve1.mat; 
Input_layer=Input_layer';
Output_layer=Output_layer';
net=newff(minmax(Input_layer),[10,3],{'tansig','pureli
n'},'trainrp'); 
net.trainParam.epochs=50000; % 50000 epochs
net.trainParam.show=2000;
net.trainParam.lr=0.15; 
net.trainParam.mc=0.7; 
net.trainParam.goal=0.0000001; % the min error is 
0.0000001
net=train(net,Input_layer,Output_layer);
Y=[769.31322;558.99737;31.5];
i=0;a=[];
for Cr=0:0.05:0.133for Mn=1.59:-0.05:1.30for V=0.041:-0.005:0.025x=[Cr;Mn;V];y=sim(net,x);diff=(y-Y)./Y;diff=abs(diff);if diff(1)<=0.1&&diff(2)<=0.1&&diff(3)<=0.1i=i+1;a(i,:)=x'; endendendend
clear;
load bpnerve2.mat; 
Input_layer=Input_layer';
Output_layer=Output_layer';
net=newff(minmax(Input_layer),[10,3],{'tansig','pureli
n'},'trainrp'); 
net.trainParam.epochs=50000; % 50000 epochs
net.trainParam.show=2000; 
net.trainParam.lr=0.15; 
net.trainParam.mc=0.7; 
net.trainParam.goal=0.0000001; % the min error is 
0.0000001
net=train(net,Input_layer,Output_layer);
Y=[769.31322;558.99737;31.5];
i=0;a=[];
for Cr=0:0.05:0.133for Mn=1.59:-0.05:1.30for V=0.041:-0.005:0.025x=[Cr;Mn;V];y=sim(net,x);diff=(y-Y)./Y;
diff=abs(diff);if diff(1)<=0.1&&diff(2)<=0.1&&diff(3)<=0.1i=i+1;a(i,:)=x'; endendendend
a
clear
load question_steel1.mat
plot3(Cr,Mn,tensile_strength,'bo')
grid on;
xlabel('Cr'); % the x label is Cr
ylabel('Mn'); % the y label is Mn
zlabel('tensile_strength'); % the z label is 
tensile_strength
全部论文及程序请见下方“ 只会建模 QQ名片” 点击QQ名片即可

这篇关于2016年亚太杯APMCM数学建模大赛B题化学元素对变形钢筋性能的影响求解全过程文档及程序的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/314372

相关文章

IDEA中配置Tomcat全过程

《IDEA中配置Tomcat全过程》文章介绍了在IDEA中配置Tomcat的六步流程,包括添加服务器、配置部署选项、设置应用服务器及启动,并提及Maven依赖可能因约定大于配置导致问题,需检查依赖版本... 目录第一步第二步第三步第四步第五步第六步总结第一步选择这个方框第二步选择+号,找到Tomca

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre

springboot自定义注解RateLimiter限流注解技术文档详解

《springboot自定义注解RateLimiter限流注解技术文档详解》文章介绍了限流技术的概念、作用及实现方式,通过SpringAOP拦截方法、缓存存储计数器,结合注解、枚举、异常类等核心组件,... 目录什么是限流系统架构核心组件详解1. 限流注解 (@RateLimiter)2. 限流类型枚举 (

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

Spring Boot从main方法到内嵌Tomcat的全过程(自动化流程)

《SpringBoot从main方法到内嵌Tomcat的全过程(自动化流程)》SpringBoot启动始于main方法,创建SpringApplication实例,初始化上下文,准备环境,刷新容器并... 目录1. 入口:main方法2. SpringApplication初始化2.1 构造阶段3. 运行阶

RabbitMQ消息总线方式刷新配置服务全过程

《RabbitMQ消息总线方式刷新配置服务全过程》SpringCloudBus通过消息总线与MQ实现微服务配置统一刷新,结合GitWebhooks自动触发更新,避免手动重启,提升效率与可靠性,适用于配... 目录前言介绍环境准备代码示例测试验证总结前言介绍在微服务架构中,为了更方便的向微服务实例广播消息,

Zabbix在MySQL性能监控方面的运用及最佳实践记录

《Zabbix在MySQL性能监控方面的运用及最佳实践记录》Zabbix通过自定义脚本和内置模板监控MySQL核心指标(连接、查询、资源、复制),支持自动发现多实例及告警通知,结合可视化仪表盘,可有效... 目录一、核心监控指标及配置1. 关键监控指标示例2. 配置方法二、自动发现与多实例管理1. 实践步骤

Java docx4j高效处理Word文档的实战指南

《Javadocx4j高效处理Word文档的实战指南》对于需要在Java应用程序中生成、修改或处理Word文档的开发者来说,docx4j是一个强大而专业的选择,下面我们就来看看docx4j的具体使用... 目录引言一、环境准备与基础配置1.1 Maven依赖配置1.2 初始化测试类二、增强版文档操作示例2.

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、

MySQL 多列 IN 查询之语法、性能与实战技巧(最新整理)

《MySQL多列IN查询之语法、性能与实战技巧(最新整理)》本文详解MySQL多列IN查询,对比传统OR写法,强调其简洁高效,适合批量匹配复合键,通过联合索引、分批次优化提升性能,兼容多种数据库... 目录一、基础语法:多列 IN 的两种写法1. 直接值列表2. 子查询二、对比传统 OR 的写法三、性能分析