利用离散序列的差分运算寻找序列的下降沿、上升沿、极大值(波峰)、极小值(波谷)的原理

本文主要是介绍利用离散序列的差分运算寻找序列的下降沿、上升沿、极大值(波峰)、极小值(波谷)的原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

我们先来看一看对于连续函数,我们通常是怎么求其极值的。
通常我们用函数极值的第一充分条件和第二充分条件来求函数的极值。
函数极值的第一充分条件和第二充分条件的内容如下:
(懒得自己写了,直接把高等数学书上的内容截图发上来吧,大家将就看吧!)
在这里插入图片描述
在这里插入图片描述
在实际工程中,我们用得最多的是第二充分条件。

说完了连续函数求极值点,自然该说离散序列怎么找极值点了,即我们常说的寻找离散序列的波峰、波谷。

为了说明这个问题,首先我们要知道“离散序列差分运算”的概念。
设有序列 . . . , f ( k − 2 ) , f ( k − 1 ) , f ( k ) , f ( k + 1 ) , f ( k + 2 ) , . . . ...,f(k-2),f(k-1),f(k),f(k+1),f(k+2),... ...,f(k2),f(k1),f(k),f(k+1),f(k+2),...
则这个序列第k点的:
一阶前向差分定义为: △ f ( k ) = f ( k + 1 ) − f ( k ) \bigtriangleup f(k)=f(k+1)-f(k) f(k)=f(k+1)f(k)
一阶后向差分定义为: ▽ f ( k ) = f ( k ) − f ( k − 1 ) \bigtriangledown f(k)=f(k)-f(k-1) f(k)=f(k)f(k1)
从上面的定义来看,前向差分和后向差分其实没有本质上的区别,所以它们的性质也相同。
序列f(k)的二阶差分是对其一阶差分的差分,即:
△ 2 f ( k ) = △ [ △ f ( k ) ] = △ [ f ( k + 1 ) − f ( k ) ] = △ f ( k + 1 ) − △ f ( k ) \bigtriangleup ^{2} f(k)=\bigtriangleup [\bigtriangleup f(k)]=\bigtriangleup [f(k+1)-f(k)]=\bigtriangleup f(k+1)-\bigtriangleup f(k) 2f(k)=[f(k)]=[f(k+1)f(k)]=f(k+1)f(k)
      = f ( k + 2 ) − 2 f ( k + 1 ) + f ( k ) =f(k+2)-2f(k+1)+f(k) =f(k+2)2f(k+1)+f(k)

用通俗的话来讲:差分,其实就是下一个数值 ,减去上一个数值 。用下一个数值,减去上一个数值 ,就叫“一阶差分”,对一阶差分的结果再做一次差分,就叫“二阶差分"。

从上面的定义式我们可以看出:
对于序列的前向差分,其最后一个点是没有一阶差分的,其最后两个点是没有二阶差分的。

对于序列的后向差分,其第一个点是没有一阶差分的,其第一个点和第二个点是没有二阶差分的。

那么怎么利用序列的差分运算寻找序列的下降沿、上升沿、极值点(波峰、波谷)呢?
离散序列的差分运算类似于连续函数中的求导运算,所以对比上面连续函数对极值点判定的充分条件,我们可以探索出对离散序列下降沿、上升沿、极值点(波峰、波谷)的找寻方法。具体方法如下:

情况一:寻找下降沿
设离散序列中序号为k的点满足以下条件:
△ f ( k ) = 0 \bigtriangleup f(k)=0 f(k)=0
△ f ( k + 1 ) < 0 \bigtriangleup f(k+1)<0 f(k+1)<0
则序号为k+1的点是一个下降沿。
证明:
因为 △ f ( k ) = 0 \bigtriangleup f(k)=0 f(k)=0,所以有 f ( k + 1 ) − f ( k ) = 0 f(k+1)-f(k)=0 f(k+1)f(k)=0,所以 f ( k + 1 ) = f ( k ) f(k+1)=f(k) f(k+1)=f(k)
又由于 △ f ( k + 1 ) < 0 \bigtriangleup f(k+1)<0 f(k+1)<0
所以 △ f ( k + 1 ) = f ( k + 2 ) − f ( k + 1 ) < 0 \bigtriangleup f(k+1)=f(k+2)-f(k+1)<0 f(k+1)=f(k+2)f(k+1)<0
综上,有 f ( k ) = f ( k + 1 ) > f ( k + 2 ) f(k)=f(k+1)>f(k+2) f(k)=f(k+1)>f(k+2)
所以第k+1个点是一个下降沿的边缘。
此时相关点的位置关系如下图所示:
在这里插入图片描述
情况二:寻找上升沿
设离散序列中序号为k的点满足以下条件:
△ f ( k ) = 0 \bigtriangleup f(k)=0 f(k)=0
△ f ( k + 1 ) > 0 \bigtriangleup f(k+1)>0 f(k+1)>0
则序号为k+1的点是一个上升沿。
证明:
因为 △ f ( k ) = 0 \bigtriangleup f(k)=0 f(k)=0,所以有 f ( k + 1 ) − f ( k ) = 0 f(k+1)-f(k)=0 f(k+1)f(k)=0,所以 f ( k + 1 ) = f ( k ) f(k+1)=f(k) f(k+1)=f(k)
又由于 △ f ( k + 1 ) > 0 \bigtriangleup f(k+1)>0 f(k+1)>0
所以 △ f ( k + 1 ) = f ( k + 2 ) − f ( k + 1 ) > 0 \bigtriangleup f(k+1)=f(k+2)-f(k+1)>0 f(k+1)=f(k+2)f(k+1)>0
综上,有 f ( k ) = f ( k + 1 ) < f ( k + 2 ) f(k)=f(k+1)<f(k+2) f(k)=f(k+1)<f(k+2)
所以第k+1个点是一个上升沿的边缘。
此时相关点的位置关系如下图所示:
在这里插入图片描述

情况三:寻找极大值点
设离散序列中序号为k的点满足以下条件:
△ f ( k − 2 ) > 0 \bigtriangleup f(k-2)>0 f(k2)>0
△ f ( k − 1 ) = 0 \bigtriangleup f(k-1)=0 f(k1)=0
△ f ( k ) = 0 \bigtriangleup f(k)=0 f(k)=0
△ f ( k + 1 ) < 0 \bigtriangleup f(k+1)<0 f(k+1)<0
则序号为k的点是一个极大值点。
证明:略,参考情况一、情况二的证明。
此时相关点的位置关系如下图所示:
在这里插入图片描述
情况四:找寻极小值点
设离散序列中序号为k的点满足以下条件:
△ f ( k − 2 ) < 0 \bigtriangleup f(k-2)<0 f(k2)<0
△ f ( k − 1 ) = 0 \bigtriangleup f(k-1)=0 f(k1)=0
△ f ( k ) = 0 \bigtriangleup f(k)=0 f(k)=0
△ f ( k + 1 ) > 0 \bigtriangleup f(k+1)>0 f(k+1)>0
则序号为k的点是一个极小值点。
证明:略,参考情况一、情况二的证明。
此时相关点的位置关系如下图所示:
在这里插入图片描述
需要说明的两点:
①上面情况三、情况四的条件是充分条件,也就是说不满足上面情况的点也有可能是极大值点,极小值点。比如下面图中的k点,它是一个波峰,但它并不满足上面的判定条件。
在这里插入图片描述
②上面的判断条件中并没有用到前面介绍的二阶差分,那为什么要说二阶差分运算呢?因为刚好说到这个知识点,所以就多说了几句嘛。

下面这个链接是运用序列的差分运算找寻离散序列下降沿的例子:
https://www.hhai.cc/thread-232-1-1.html

这篇关于利用离散序列的差分运算寻找序列的下降沿、上升沿、极大值(波峰)、极小值(波谷)的原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/314027

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Redis中Hash从使用过程到原理说明

《Redis中Hash从使用过程到原理说明》RedisHash结构用于存储字段-值对,适合对象数据,支持HSET、HGET等命令,采用ziplist或hashtable编码,通过渐进式rehash优化... 目录一、开篇:Hash就像超市的货架二、Hash的基本使用1. 常用命令示例2. Java操作示例三

Redis中Set结构使用过程与原理说明

《Redis中Set结构使用过程与原理说明》本文解析了RedisSet数据结构,涵盖其基本操作(如添加、查找)、集合运算(交并差)、底层实现(intset与hashtable自动切换机制)、典型应用场... 目录开篇:从购物车到Redis Set一、Redis Set的基本操作1.1 编程常用命令1.2 集

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

java程序远程debug原理与配置全过程

《java程序远程debug原理与配置全过程》文章介绍了Java远程调试的JPDA体系,包含JVMTI监控JVM、JDWP传输调试命令、JDI提供调试接口,通过-Xdebug、-Xrunjdwp参数配... 目录背景组成模块间联系IBM对三个模块的详细介绍编程使用总结背景日常工作中,每个程序员都会遇到bu

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数

java 恺撒加密/解密实现原理(附带源码)

《java恺撒加密/解密实现原理(附带源码)》本文介绍Java实现恺撒加密与解密,通过固定位移量对字母进行循环替换,保留大小写及非字母字符,由于其实现简单、易于理解,恺撒加密常被用作学习加密算法的入... 目录Java 恺撒加密/解密实现1. 项目背景与介绍2. 相关知识2.1 恺撒加密算法原理2.2 Ja