大数据(4c)Kafka理论知识

2023-10-31 05:59
文章标签 数据 kafka 理论知识 4c

本文主要是介绍大数据(4c)Kafka理论知识,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

高吞吐的目录

  • 1、基础理论
    • 1.1、什么是消息队列
    • 1.2、消息队列的两种模式
    • 1.3、高可用原理
  • 2、Kafka概述
  • 3、主题和分区
  • 4、数据存储原理
  • 5、Kafka读写如何高效?
  • 6、生产数据的可靠性
    • 6.1、应答机制
    • 6.2、领导候选
    • 6.3、数据一致性
    • 6.4、容错机制
  • 附录

1、基础理论

1.1、什么是消息队列

  • Message Queue
  • 消息的传输过程中保存消息的容器
  • 应用场景:程序解耦、异步消息、流量削锋…

1.2、消息队列的两种模式

点对点模式(消费者主动拉取数据,拉取成功后删除队列上的数据)

一个消息 只能有一个消费者可以消费

发布/订阅模式(消费者消费数据之后,队列上的数据不会被马上清除)

1.3、高可用原理

  • High Availability
  • 目标:减少停工时间
  • 策略:消除单点故障

工作模式

2、Kafka概述

  • 基于发布/订阅模式分布式消息队列
  • 主用场景:大数据实时处理、流量削峰

架构图

英文名译名说明
Producer生产者生产消息
Consumer消费者消费消息
Consumer Group消费者组由多个Consumer组成
是逻辑上的一个订阅者
Broker经纪人一台Kafka服务器就是一个Broker
一个集群由多个Broker组成
一个Broker可以容纳多个topic的partition
Topic主题可以理解为一个存放消息的逻辑上的队列
一个topic可以分布到多个Broker
Partition分区一个topic可以分存多个partition
每个partition是一个有序的队列
Replica复制品数据副本
Leader首领对接生产者和消费者
Follower追随者实时同步leader的数据
leader故障时,某follower会成为新的leader

3、主题和分区

  • 主题是逻辑上的概念
  • 分区是物理上的概念,以文件夹的方式

一个主题下可以有多个分区;分区有序,主题不一定有序

消费者组是逻辑上的一个订阅者,由多个消费者组成

各个分区可以被消费者并行消费

多个消费者组可以订阅同一个主题
1个消费者可以消费多个分区
对于1个消费者组,1个分区 只能被 该消费者组内的1个消费者 消费

建议 某主题的分区数=订阅该主题的消费者组的消费者数

一台服务器有Broker,一个集群由多个Broker组成

一个Topic可以分布到多个Broker

4、数据存储原理

Kafka将 生产者发送的消息 暂存到硬盘

下面使用命令查看具体的文件夹和文件

1、把segment改小,使得容易产生大量segment

vi $KAFKA_HOME/config/server.properties
log.segment.bytes=102400

2、创建分区,两个副本,三个分区

kafka-topics.sh \
--zookeeper hadoop100:2181/kafka \
--create \
--replication-factor 2 \
--partitions 3 \
--topic topicA

3、生产数据(Kafka内置的生产者,可用于压测)

kafka-producer-perf-test.sh --topic topicA \
--num-records 4000 --record-size 1024 \
--producer-props bootstrap.servers=hadoop100:9092 --throughput -1
参数说明
--num-records写多少个数据
--record-size每个数据多大(单位:byte)
--producer-props指定数据写到哪个集群
--throughput写数据速率限制,-1表示不限

4、查看数据目录下名为topicA的主题

ls $KAFKA_HOME/logs | grep topicA
ssh hadoop101 'ls $KAFKA_HOME/logs | grep topicA'
ssh hadoop102 'ls $KAFKA_HOME/logs | grep topicA'

5、查看分区(文件夹)内的文件

ll topicA-1

6、查看索引文件以及偏移量(offset)

kafka-dump-log.sh --print-data-log --files 00000000000000000000.index

7、数据查找

5、Kafka读写如何高效?

  • 多分区并行
  • 顺序写磁盘
    顺序写 速度 远大于 随机写
  • 使用了page cache(译名:页高速缓冲存储器)
    在Linux读写文件时,page cache用于缓存文件的逻辑内容,从而加快对磁盘上映像和数据的访问
  • 零复制技术

6、生产数据的可靠性

6.1、应答机制

  • ACK
  • 全称:acknowledgement character
  • 译名:命令正确应答
  • 应答等级
    ack=0:Leader接收数据后 应答
    ack=1:Leader接收数据并写入后 应答
    ack=-1:Leader接收和写入数据,Follower同步数据 后应答

6.2、领导候选

  • ISR
  • 全称:in-sync replica set
  • leader同步到一定程度的follower
  • 长期没同步的follower将被踢出ISR
  • leader挂掉后就从ISR中选举新leader
kafka-topics.sh --describe --topic topicA --bootstrap-server hadoop100:9092

查看主题信息,如:分区数、领导者、追随者、Isr……

6.3、数据一致性

只能保证副本之间的数据一致性,并不能保证数据不丢失或不重复

  • LEO
    log end offset
    当前日志数据(副本)最后一个偏移量

  • HW
    high watermark
    所有副本的LEO中 最小的那一个

6.4、容错机制

容错等级语义说明
at most once数据最多一条数据可能会丢,但不会重复
at least one数据至少一条数据绝不会丢,但可能重复
exactly once数据有且只有一条数据不会丢,也不会重复

如何实现【exactly once】
1、ack=-1,实现数据不会丢
2、开启幂等性
3、给消息添加唯一标识【生产者ID、分区号、该分区的数据的偏移量】,据此防止数据重复
4、生产者不要挂(生产者挂掉重启后,生产者编号可能变)或 固定生产者编号

附录

en🔉cn
brokerˈbroʊkərn. 经纪人
acknowledgementəkˈnɑːlɪdʒməntn. 承认;确认;感谢
replicaˈreplɪkən. 复制品,仿制品;摹本
bootstrapˈbuːtstræpn. (靴筒后的)靴襻;[计] 引导程序;vt. 启动(电脑)
watermarkˈwɔːtərmɑːrkn. 水印;vt. 印水印;(water mark 两单词合体)
exactlyɪɡˈzæktliadv. 恰好地;精确地;正确地

这篇关于大数据(4c)Kafka理论知识的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/313305

相关文章

SpringBoot集成EasyExcel实现百万级别的数据导入导出实践指南

《SpringBoot集成EasyExcel实现百万级别的数据导入导出实践指南》本文将基于开源项目springboot-easyexcel-batch进行解析与扩展,手把手教大家如何在SpringBo... 目录项目结构概览核心依赖百万级导出实战场景核心代码效果百万级导入实战场景监听器和Service(核心

使用Python开发一个Ditto剪贴板数据导出工具

《使用Python开发一个Ditto剪贴板数据导出工具》在日常工作中,我们经常需要处理大量的剪贴板数据,下面将介绍如何使用Python的wxPython库开发一个图形化工具,实现从Ditto数据库中读... 目录前言运行结果项目需求分析技术选型核心功能实现1. Ditto数据库结构分析2. 数据库自动定位3

pandas数据的合并concat()和merge()方式

《pandas数据的合并concat()和merge()方式》Pandas中concat沿轴合并数据框(行或列),merge基于键连接(内/外/左/右),concat用于纵向或横向拼接,merge用于... 目录concat() 轴向连接合并(1) join='outer',axis=0(2)join='o

批量导入txt数据到的redis过程

《批量导入txt数据到的redis过程》用户通过将Redis命令逐行写入txt文件,利用管道模式运行客户端,成功执行批量删除以Product*匹配的Key操作,提高了数据清理效率... 目录批量导入txt数据到Redisjs把redis命令按一条 一行写到txt中管道命令运行redis客户端成功了批量删除k

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速