uie模型微调个人总结

2023-10-31 05:50
文章标签 总结 模型 微调 个人 uie

本文主要是介绍uie模型微调个人总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

技巧:

六月三十号补充,uie处理3000字的政策文件要占用12G左右的内存,uie处理一万字的文件时运行巅峰要占用28G左右内存,各位部署时,注意out of memory的错误,对应万字的超长文本目前只有加内存的解决方案。

六月二十七号补充,uie的schema定义时尽量一个schema的长度低于7个字,不然有很大概率,模型识别的效果很差,如图:“执行标准”有一个比较好的抽取效果,“文件执行范围和标准”就完全抽不出来,当然我doccano标注数据的schema也是和不同schema之间保持一致的。

为什么能不固定prompt?

传统Prompt模板各有不同,应对少样本能力不一样

UIE用大量数据固定了prompt的构造方式,就是条件加上抽取标签,所以有不固定的特点

标签其实模型压根都没见过,模型照样能看出来

Prompt技巧

1.与原文越相似越好抽

2.尽量符合常识

3.标注的样本尽量要短

训练技巧:

1.预测可以将batch_size设置为2或者更高来提高预测效率

2.uie-tiny 和base效果差距不大,但性能提高巨大

3.需要负样本的

环境配置:

只需要一个paddlepaddle,安装最新版即可,会自动给你安装许多相关包,

openAI尽量不要装在同一个环境,会改变numpy版本导致paddlepaddle不可用

csdn:

pip install paddlepaddle 报错 command ‘/usr/bin/gcc‘ failed with exit code 1 或 command ‘gcc‘ 报错_听雨江南牛的博客-CSDN博客

语料标注:

到目前五月二十四号,doccano已经更新到1.7.0版本,导出已经没有标注消失的问题,但是我手头数据有很多重复数据,我没有二次标注,doccano会以标注空的形式继续导出,但我更希望它忽视掉这些数据,不要导出,我依旧采用程序形式导出

csdn:

doccano标注完后,标注消失问题_听雨江南牛的博客-CSDN博客

项目部署和参数调整

最无脑的环节,全程跟着readme一步步向下执行就可以了,

需要改动一下数据路径:

另外需要改动模型保存和加载的路径,

需要改动用6层的uie-tiny模型,还是调用12层的uie-base,uie-tiny和uie-base效果基本没有差别,但是预测效率高很多,建议uie-tiny

必须改动的:
doccano中的:doccano_file  从doccano导出的数据标注文件save_dir: 训练数据的保存目录,默认存储在data目录下finetune中的:train_path`: 训练集文件路径。dev_path`: 验证集文件路径。save_dir`: 模型存储路径,默认为. / checkpoint
可选的:
doccano中的:negative_ratio: 负样本与正样本的比例,该参数只对抽取类型任务有效。使用负样本策略可提升模型效果,负样本数量 = negative_ratio * 正样本数量。splits: 划分数据集时训练集、验证集所占的比例。默认为[0.8, 0.1, 0.1]is_shuffle: 是否对数据集进行随机打散,默认为True
​
finetune中的:learning_rate`: 学习率,默认为1e - 5。batch_size`: 批处理大小,请结合显存情况进行调整,若出现显存不足,请适当调低这一参数,默认为16。max_seq_len`: 文本最大切分长度,输入超过最大长度时会对输入文本进行自动切分,默认为512。num_epochs`: 训练轮数,默认为100。device`: 选用什么设备进行训练,可选cpu或gpu。model`: 选择模型,程序会基于选择的模型进行模型微调

测试结果在gitee中

不公开,但是94条数据训练完想抽的基本都能抽出来

这篇关于uie模型微调个人总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/313255

相关文章

SQL中JOIN操作的条件使用总结与实践

《SQL中JOIN操作的条件使用总结与实践》在SQL查询中,JOIN操作是多表关联的核心工具,本文将从原理,场景和最佳实践三个方面总结JOIN条件的使用规则,希望可以帮助开发者精准控制查询逻辑... 目录一、ON与WHERE的本质区别二、场景化条件使用规则三、最佳实践建议1.优先使用ON条件2.WHERE用

Nginx Location映射规则总结归纳与最佳实践

《NginxLocation映射规则总结归纳与最佳实践》Nginx的location指令是配置请求路由的核心机制,其匹配规则直接影响请求的处理流程,下面给大家介绍NginxLocation映射规则... 目录一、Location匹配规则与优先级1. 匹配模式2. 优先级顺序3. 匹配示例二、Proxy_pa

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

MySQL基本查询示例总结

《MySQL基本查询示例总结》:本文主要介绍MySQL基本查询示例总结,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Create插入替换Retrieve(读取)select(确定列)where条件(确定行)null查询order by语句li

Linux区分SSD和机械硬盘的方法总结

《Linux区分SSD和机械硬盘的方法总结》在Linux系统管理中,了解存储设备的类型和特性是至关重要的,不同的存储介质(如固态硬盘SSD和机械硬盘HDD)在性能、可靠性和适用场景上有着显著差异,本文... 目录一、lsblk 命令简介基本用法二、识别磁盘类型的关键参数:ROTA查询 ROTA 参数ROTA

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

Windows Docker端口占用错误及解决方案总结

《WindowsDocker端口占用错误及解决方案总结》在Windows环境下使用Docker容器时,端口占用错误是开发和运维中常见且棘手的问题,本文将深入剖析该问题的成因,介绍如何通过查看端口分配... 目录引言Windows docker 端口占用错误及解决方案汇总端口冲突形成原因解析诊断当前端口情况解