TOF、RGB双目、结构光优劣分析

2023-10-31 03:30
文章标签 分析 结构 优劣 tof rgb 双目

本文主要是介绍TOF、RGB双目、结构光优劣分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转自:https://blog.csdn.net/qq_37764129/article/details/81011221

目前的深度相机根据其工作原理可以分为三种:TOF、RGB双目、结构光

一、RGB双目

    RGB双目相机因为非常依赖纯图像特征匹配,所以在光照较暗或者过度曝光的情况下效果都非常差,另外如果被测场景本身缺乏纹理,也很难进行特征提取和匹配。你看看下面的图就懂了。

三种相机的参数对比:

从分辨率、帧率、软件复杂度、功耗等方面来考虑

(1)分辨率

    TOF方案深度图分辨率很难提高,一般都达不到VGA(640x480)分辨率。比如Kinect2的TOF方案深度图分辨率只有512x424。而Google和联想合作的PHAB2手机的后置TOF深度相机分辨率只有224x171。TOF方案受物理器件的限制,分辨率很难做到接近VGA的,即使做到,也会和功耗呈指数倍增长。

    结构光的分辨率在较近使用范围内,结构光方案的分辨率会大大高于TOF方案。比如目前结构光方案的深度图最高可以做到1080p左右的分辨率了。

(2)帧率

    帧率的话,TOF方案可以达到非常高的帧率,差不多上百fps吧。结构光方案帧率会低点,典型的是30fps,不过这也基本够用了。

(3)软件复杂度

    结构光因为需要对编码的结构光进行解码,所以复杂度要比直接测距的TOF高一些。

(4)功耗

    TOF是激光全面照射,而结构光是只照射其中局部区域,比如PrimeSense的伪随机散斑图案,只覆盖了不到十分之一的空间。另外,TOF发射的是高频调制脉冲,而结构光投射图案并不需要高频调制,所以结构光的功耗要比TOF低很多。还是以伪随机散斑结构光为例,结构光方案功耗只有TOF的十分之一不到吧。

    下面是三种方案在分辨率,帧率,软件复杂度和功耗方面的对比结果。

    结构光方案还有一个优势在于技术成熟,PrimeSense很早就把结构光技术用在kinect一代产品中了。目前结构光技术有如下几种变种:一种是单目IR+投影红外点阵,另外一种是双目IR+投影红外点阵,这样相当于结构光+双目立体融合了,深度测量效果会比前者好一些,比如Intel RealSense R200采用的就是双目IR+投影红外点阵,不足之处就是体积较大。而单目IR+投影红外点阵的方案虽然体积较小,但是效果会差一点。

(5)计算复杂度

    计算方式也分几种:一是直接用ASIC(专用集成电路)进行计算,成本稍微高一点,但是处理速度快,支持高帧率和高分辨率深度相机,关键是比通用芯片功耗低。二是DSP+软件算法,成本跟用ASIC差不多,但支持不了高帧率高分辨率,功耗比ASIC稍高。三是直接用手机的AP(Application Processor)进行纯软件计算,这个不需要额外增加硬件成本,但是比较消耗AP的计算资源。同样也不支持高帧率高分辨率,功耗比较大。

  

  iPhone X的深度相机技术方案:结构光原理的深度相机。具体来说是:单目IR+投影红外点阵+ASIC方案。该方案在深度分辨率、深度测量精度上有较大优势,实时性处理和全天候工作也都有保障,功耗也相对较低,就是成本稍高了一些。

    9月13日苹果发布了致敬十周年的新机型iPhone X,其中前置原深感(TrueDepth)相机引起了极大的舆论关注。该相机的构成如下图所示。从左到右,依次是红外镜头、泛光感应元件、距离传感器、环境光传感器、扬声器、麦克风、700万像素摄像头、点阵投影器。其中最有里程碑意义的当属红外镜头 + 点阵投影器 + RGB摄像头的组合。

 

转自:https://blog.csdn.net/electech6/article/details/78889057

https://blog.csdn.net/electech6/article/details/78348917

这篇关于TOF、RGB双目、结构光优劣分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/312495

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Redis中Set结构使用过程与原理说明

《Redis中Set结构使用过程与原理说明》本文解析了RedisSet数据结构,涵盖其基本操作(如添加、查找)、集合运算(交并差)、底层实现(intset与hashtable自动切换机制)、典型应用场... 目录开篇:从购物车到Redis Set一、Redis Set的基本操作1.1 编程常用命令1.2 集

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

Java中最全最基础的IO流概述和简介案例分析

《Java中最全最基础的IO流概述和简介案例分析》JavaIO流用于程序与外部设备的数据交互,分为字节流(InputStream/OutputStream)和字符流(Reader/Writer),处理... 目录IO流简介IO是什么应用场景IO流的分类流的超类类型字节文件流应用简介核心API文件输出流应用文

Vite 打包目录结构自定义配置小结

《Vite打包目录结构自定义配置小结》在Vite工程开发中,默认打包后的dist目录资源常集中在asset目录下,不利于资源管理,本文基于Rollup配置原理,本文就来介绍一下通过Vite配置自定义... 目录一、实现原理二、具体配置步骤1. 基础配置文件2. 配置说明(1)js 资源分离(2)非 JS 资

Java集合中的链表与结构详解

《Java集合中的链表与结构详解》链表是一种物理存储结构上非连续的存储结构,数据元素的逻辑顺序的通过链表中的引用链接次序实现,文章对比ArrayList与LinkedList的结构差异,详细讲解了链表... 目录一、链表概念与结构二、当向单链表的实现2.1 准备工作2.2 初始化链表2.3 打印数据、链表长