杂记 | 基于OpenAIEmbedding向量存储的LangChain示例选择器(节省token、提升响应速度、提高回复准确性)

本文主要是介绍杂记 | 基于OpenAIEmbedding向量存储的LangChain示例选择器(节省token、提升响应速度、提高回复准确性),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 01 场景痛点
  • 02 示例选择器
  • 03 实现代码
  • 04 补充 - 最大余弦示例选择器


01 场景痛点

在使用ChatGPT的接口进行交互时,我们常常会通过提供示例的方式来提高大语言模型响应的准确性,在LangChain这一大语言模型通用开发框架中,这被称作few-shot。
然而,一次提供给大语言模型的示例并非越多越好,在一次输入中如果提供了太多的示例,可能造成以下问题:

  • 准确性下降:如果示例的情况比较复杂,过多的示例反而会让大模型产生困扰,尤其是在不那么聪明的gpt-3.5模型上
  • 成本上升:过多的示例文本必然导致token消耗的增加,提高了模型的使用成本
  • 响应时间变长:同理,过多的token会让大模型的处理速度变慢

02 示例选择器

为了解决这一问题,可以使用LangChain的示例选择器来实现,即根据用户的输入,从大量的示例中选出与输入最接近的几个示例,再给到大模型,而非每次都将全部的示例传入。

那么,如何实现从大量的示例中选出与输入最接近的几个示例呢?

最朴素的想法是让gpt来选,但这并没有真正解决问题,因为这属于一步拆成两步的操作。

而向量化的方法完美适配这一场景,OpenAI也提供了用于文本向量嵌入的Embedding模型。

其原理大致是这样的:

提供一个包含了大量示例的示例集,将这些示例中的每个示例转换为向量形式再存储到向量数据库,转换的过程使用OpenAI的Embedding模型,该模型的价格约为gpt3.5模型的1/15,且专门为文本向量化设计。
对于用户的一个输入,同样将其转换为向量表示,向量化后,不同向量之间便可以比较,此时再用用户的输入向量到向量数据库中查找最相似的几条向量,将其对应的原始示例文本添加到提示词中。

而这整个过程,都在LangChain中可以方便的实现。

03 实现代码

以语义相似示例选择器和嵌入式向量数据库Chroma为例。
使用前,需要先安装依赖库:

pip install chromadb tiktoken

python代码

from langchain.prompts.example_selector import SemanticSimilarityExampleSelector
from langchain.vectorstores import Chroma
from langchain.embeddings import OpenAIEmbeddings
from langchain.prompts import FewShotPromptTemplate, PromptTemplate# 创建单个示例的范式模板
example_prompt = PromptTemplate(input_variables=["input", "output"],template="Input: {input}\nOutput: {output}",
)# 创建一个示例集 其中每个dict中的键名称要与范式模板的input_variables对应
examples = [{"input": "happy", "output": "sad"},{"input": "tall", "output": "short"},{"input": "energetic", "output": "lethargic"},{"input": "sunny", "output": "gloomy"},{"input": "windy", "output": "calm"},
]# 创建语义相似示例选择器
example_selector = SemanticSimilarityExampleSelector.from_examples(examples,  # 示例集OpenAIEmbeddings(),  # OpenAI的Embedding模型 用于将文本转换为向量Chroma,  # Chroma向量数据库 这是一个嵌入式向量数据库k=3  # 每次选择3个示例 不写这个参数默认会选择4个
)# 带示例的提示词模板
similar_prompt = FewShotPromptTemplate(example_selector=example_selector,  # 传入刚才创建好的示例选择器对象example_prompt=example_prompt,  # 单个示例的范式模板prefix="Give the antonym of every input",  # 示例前的提示语suffix="Input: {adjective}\nOutput:",  # 示例后的提示语input_variables=["adjective"],  # 用户的输入变量插槽
)# 输入感受 会选择happy/sad这一示例
print(similar_prompt.format(adjective="worried"), end=f"\n{'-' * 50}\n")# 输入度量 会选择tall/short这一示例
print(similar_prompt.format(adjective="large"), end=f"\n{'-' * 50}\n")# 新增示例 热情/冷漠
similar_prompt.example_selector.add_example({"input": "enthusiastic", "output": "apathetic"})
print(similar_prompt.format(adjective="passionate"))  # 热情

04 补充 - 最大余弦示例选择器

在LangChain中还有一种示例选择器,叫做最大余弦示例选择器,在使用时,仅需将上述代码中引入的“语义相似示例选择器进行替换即可”:

# 语义相似示例选择器
from langchain.prompts.example_selector import SemanticSimilarityExampleSelector
# 替换为 最大余弦示例选择器
from langchain.prompts.example_selector import MaxMarginalRelevanceExampleSelector

关于二者的区别,LangChain文档的问答功能是这样回答的:

MaxMarginalRelevanceExampleSelector和SemanticSimilarityExampleSelector的主要区别如下:

  • 选择原理不同
    SemanticSimilarityExampleSelector仅根据embedding向量之间的相似度选择示例,选择与输入embedding向量最相似的示例。
    MaxMarginalRelevanceExampleSelector在选择最相似的示例的同时,还考虑示例之间的多样性。它会逐步选择相似度最高的示例,但会惩罚与已选择示例过于相似的示例,以保证选择结果的多样性。

  • 实现优化不同
    SemanticSimilarityExampleSelector仅需要计算输入与各示例embedding之间的相似度,实现简单。
    MaxMarginalRelevanceExampleSelector需要额外计算各示例embedding之间的相似度,实现更复杂。但可以产生更多样化的选择结果。

  • 使用场景不同
    当仅需要根据相似度选择示例时,SemanticSimilarityExampleSelector更适用。
    当需要同时考虑相似度和多样性时,MaxMarginalRelevanceExampleSelector更适用。

总体来说,MaxMarginalRelevanceExampleSelector相比SemanticSimilarityExampleSelector,选择机制更复杂,但可以产生更多样化的结果,
更适用于需要示例多样性的场景。两者各有优势,应根据实际需要选择使用。

不过据说OpenAI官方建议使用最大余弦示例选择器,读者可以对比各自使用效果后自信选择。

这篇关于杂记 | 基于OpenAIEmbedding向量存储的LangChain示例选择器(节省token、提升响应速度、提高回复准确性)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/308219

相关文章

Go语言使用select监听多个channel的示例详解

《Go语言使用select监听多个channel的示例详解》本文将聚焦Go并发中的一个强力工具,select,这篇文章将通过实际案例学习如何优雅地监听多个Channel,实现多任务处理、超时控制和非阻... 目录一、前言:为什么要使用select二、实战目标三、案例代码:监听两个任务结果和超时四、运行示例五

MySQL常用字符串函数示例和场景介绍

《MySQL常用字符串函数示例和场景介绍》MySQL提供了丰富的字符串函数帮助我们高效地对字符串进行处理、转换和分析,本文我将全面且深入地介绍MySQL常用的字符串函数,并结合具体示例和场景,帮你熟练... 目录一、字符串函数概述1.1 字符串函数的作用1.2 字符串函数分类二、字符串长度与统计函数2.1

SQL Server 中的 WITH (NOLOCK) 示例详解

《SQLServer中的WITH(NOLOCK)示例详解》SQLServer中的WITH(NOLOCK)是一种表提示,等同于READUNCOMMITTED隔离级别,允许查询在不获取共享锁的情... 目录SQL Server 中的 WITH (NOLOCK) 详解一、WITH (NOLOCK) 的本质二、工作

MySQL CTE (Common Table Expressions)示例全解析

《MySQLCTE(CommonTableExpressions)示例全解析》MySQL8.0引入CTE,支持递归查询,可创建临时命名结果集,提升复杂查询的可读性与维护性,适用于层次结构数据处... 目录基本语法CTE 主要特点非递归 CTE简单 CTE 示例多 CTE 示例递归 CTE基本递归 CTE 结

Spring AI使用tool Calling和MCP的示例详解

《SpringAI使用toolCalling和MCP的示例详解》SpringAI1.0.0.M6引入ToolCalling与MCP协议,提升AI与工具交互的扩展性与标准化,支持信息检索、行动执行等... 目录深入探索 Spring AI聊天接口示例Function CallingMCPSTDIOSSE结束语

go动态限制并发数量的实现示例

《go动态限制并发数量的实现示例》本文主要介绍了Go并发控制方法,通过带缓冲通道和第三方库实现并发数量限制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录带有缓冲大小的通道使用第三方库其他控制并发的方法因为go从语言层面支持并发,所以面试百分百会问到

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em

Python Web框架Flask、Streamlit、FastAPI示例详解

《PythonWeb框架Flask、Streamlit、FastAPI示例详解》本文对比分析了Flask、Streamlit和FastAPI三大PythonWeb框架:Flask轻量灵活适合传统应用... 目录概述Flask详解Flask简介安装和基础配置核心概念路由和视图模板系统数据库集成实际示例Stre

Spring Bean初始化及@PostConstruc执行顺序示例详解

《SpringBean初始化及@PostConstruc执行顺序示例详解》本文给大家介绍SpringBean初始化及@PostConstruc执行顺序,本文通过实例代码给大家介绍的非常详细,对大家的... 目录1. Bean初始化执行顺序2. 成员变量初始化顺序2.1 普通Java类(非Spring环境)(

Java Spring的依赖注入理解及@Autowired用法示例详解

《JavaSpring的依赖注入理解及@Autowired用法示例详解》文章介绍了Spring依赖注入(DI)的概念、三种实现方式(构造器、Setter、字段注入),区分了@Autowired(注入... 目录一、什么是依赖注入(DI)?1. 定义2. 举个例子二、依赖注入的几种方式1. 构造器注入(Con