[深度学习从入门到女装]FCN

2023-10-30 08:59
文章标签 学习 入门 深度 fcn 女装

本文主要是介绍[深度学习从入门到女装]FCN,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

论文:Fully Convolutional Networks for Semantic Segmentation

本文简单介绍一下FCN模型,并对caffe源码进行阅读

对于convolution:

output = (input + 2 * padding  - ksize)  / stride + 1;

对于deconvolution:

output = (input - 1) * stride + ksize - 2 * padding;

FCN的整体网络框架是根据VGG16进行修改的,把最后的三层全连接层取消,换上两层conv层,然后最后一层改成上采样也就是deconv,具体的VGG结构请参考VGG

网络结果分为三种FCN-32s、FCN-16s、FCN-8s

FCN-32s:就是整个网络一条路下来,根据5次pool得到的conv7层的特征图(与原图相比缩小32倍),随后进行32倍的反卷积达到和输入图相同的尺寸,然后根据GT(Groud Truth)进行损失训练

FCN-16s:就是把7次pool得到的conv7层的特征图(与原图相比缩小32倍)进行2倍的反卷积得到比原图缩小16倍的特征图,然后把pool4层得到的特征图(与原图相比缩小16倍),将这两个特征图进行fuse操作,作者是使用sum也就是对应位置特征值相加进行fuse操作,随后将得到的融合特征图进行16倍的反卷积得到和输入图相同尺寸

FCN-8s:就是把7次pool得到的conv7层的特征图(与原图相比缩小32倍)进行4倍的反卷积得到比原图缩小8倍的特征图,然后把pool4层得到的特征图(与原图相比缩小16倍)进行2倍的反卷积得到比原图缩小8倍的特征图,再拿pool3层得到的特征图(与原图相比缩小8倍),把这三个特征图也进行sum fuse操作,然后再将这个融合特征图进行8倍反卷积得到与输入图相同尺寸

同样的还可以得到FCN-4s、FCN-2s。但是作者经过测试,再继续做下去完全没有必要,所以对于目前来说,FCN-8s是计算量和准确率相平衡的一种

下边来看看FCN-8s实现的网络caffe代码

fcn8s代码:

layer {
  name: "input"
  type: "Input"
  top: "data"
  input_param {
    # These dimensions are purely for sake of example;
    # see infer.py for how to reshape the net to the given input size.
    shape { dim: 1 dim: 3 dim: 500 dim: 500 }
  }
}

 输入为500*500*3

layer {
  name: "conv1_1"
  type: "Convolution"
  bottom: "data"
  top: "conv1_1"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    pad: 100
    kernel_size: 3
    stride: 1
  }
}
layer {
  name: "relu1_1"
  type: "ReLU"
  bottom: "conv1_1"
  top: "conv1_1"
}

第一个卷积层conv1_1的pad为100 pad后为700*700*3

使用64个3*3*3进行卷积操作后输出为698*698*64

 layer {
  name: "conv1_2"
  type: "Convolution"
  bottom: "conv1_1"
  top: "conv1_2"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    pad: 1
    kernel_size: 3
    stride: 1
  }
}
layer {
  name: "relu1_2"
  type: "ReLU"
  bottom: "conv1_2"
  top: "conv1_2"
}

第二个卷积层conv1_2的pad为1 pad后为700*700*64

使用64个3*3*64进行卷积操作后输出为698*698*64

layer {
  name: "pool1"
  type: "Pooling"
  bottom: "conv1_2"
  top: "pool1"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}

 使用stride为2的MAXpool进行pooling后输出为349*349*64

conv2_1:num_output: 128 pad: 1  kernel_size: 3 stride: 1

输出为349*349*128

conv2_2:num_output: 128 pad: 1 kernel_size: 3 stride: 1

输出为349*349*128

pool2:MAXpooling stride2 size2 输出为175*175*128(pool使用向上取整)

conv3_1、conv3_2、conv3_3:num_output: 256 pad: 1 kernel_size: 3 stride: 1

输出为175*175*256

pool3:MAXpooling stride2 size2 输出为88*88*256(pool使用向上取整)

conv4_1、conv4_2、conv4_3:num_output: 512 pad: 1 kernel_size: 3 stride: 1

输出为88*88*512

pool4:MAXpooling stride2 size2 输出为44*44*512(pool使用向上取整)

conv5_1、conv5_2、conv5_3:num_output: 512 pad: 1 kernel_size: 3 stride: 1

输出为44*44*512

pool5:MAXpooling stride2 size2 输出为22*22*512(pool使用向上取整)

layer {
  name: "fc6"
  type: "Convolution"
  bottom: "pool5"
  top: "fc6"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 4096
    pad: 0
    kernel_size: 7
    stride: 1
  }
}
layer {
  name: "relu6"
  type: "ReLU"
  bottom: "fc6"
  top: "fc6"
}

(这个作者真的懒,改的VGG16的框架,连全连接层的名字都没给改成卷积层。。。)

输入为 22*22*512 输出为16*16*4096

layer {
  name: "fc7"
  type: "Convolution"
  bottom: "fc6"
  top: "fc7"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 4096
    pad: 0
    kernel_size: 1
    stride: 1
  }
}
layer {
  name: "relu7"
  type: "ReLU"
  bottom: "fc7"
  top: "fc7"
}

 输入为16*16*4096 输出为16*16*4096

layer {
  name: "score_fr"
  type: "Convolution"
  bottom: "fc7"
  top: "score_fr"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 21
    pad: 0
    kernel_size: 1
  }
}

score_fr:输入为16*16*4096 输出为16*16*21

 layer {
  name: "upscore2"
  type: "Deconvolution"
  bottom: "score_fr"
  top: "upscore2"
  param {
    lr_mult: 0
  }
  convolution_param {
    num_output: 21
    bias_term: false
    kernel_size: 4
    stride: 2
  }
}

 upscore2:输入为16*16*21 输入为34*34*21

layer {
  name: "score_pool4"
  type: "Convolution"
  bottom: "pool4"
  top: "score_pool4"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 21
    pad: 0
    kernel_size: 1
  }
}

 score_pool4:输入为44*44*512 输出为44*44*21

layer {
  name: "score_pool4c"
  type: "Crop"
  bottom: "score_pool4"
  bottom: "upscore2"
  top: "score_pool4c"
  crop_param {
    axis: 2
    offset: 5
  }
}

 score_pool4c:这一层为对socre_pool4进行裁剪 caffe中crop作用详见Caffe中crop_layer层的理解和使用

输入为44*44*21 输出为34*34*21

layer {
  name: "fuse_pool4"
  type: "Eltwise"
  bottom: "upscore2"
  bottom: "score_pool4c"
  top: "fuse_pool4"
  eltwise_param {
    operation: SUM
  }
}

 fuse_pool4:这一层是为了将upscore2与score_pool4c进行合并,进行不同层次特征融合 输入为34*34*21

layer {
  name: "upscore_pool4"
  type: "Deconvolution"
  bottom: "fuse_pool4"
  top: "upscore_pool4"
  param {
    lr_mult: 0
  }
  convolution_param {
    num_output: 21
    bias_term: false
    kernel_size: 4
    stride: 2
  }
}

upscore_pool4:输入为34*34*21 输出为70*70*21

 layer {
  name: "score_pool3"
  type: "Convolution"
  bottom: "pool3"
  top: "score_pool3"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 21
    pad: 0
    kernel_size: 1
  }
}

 score_pool3:输入为88*88*256 输出为88*88*21

layer {
  name: "score_pool3c"
  type: "Crop"
  bottom: "score_pool3"
  bottom: "upscore_pool4"
  top: "score_pool3c"
  crop_param {
    axis: 2
    offset: 9
  }
}

 score_pool3c:这层将score_pool3进行裁剪为和upscore_pool4相同尺寸

输入为88*88*21 输出为70*70*21

layer {
  name: "fuse_pool3"
  type: "Eltwise"
  bottom: "upscore_pool4"
  bottom: "score_pool3c"
  top: "fuse_pool3"
  eltwise_param {
    operation: SUM
  }
}

 fuse_pool3:将upscore_pool4和score_pool3c特征图融合相加 输出为70*70*21

layer {
  name: "upscore8"
  type: "Deconvolution"
  bottom: "fuse_pool3"
  top: "upscore8"
  param {
    lr_mult: 0
  }
  convolution_param {
    num_output: 21
    bias_term: false
    kernel_size: 16
    stride: 8
  }
}

 upscore8:输入为70*70*21 输出为568*568*21

layer {
  name: "score"
  type: "Crop"
  bottom: "upscore8"
  bottom: "data"
  top: "score"
  crop_param {
    axis: 2
    offset: 31
  }
}

 score:对最终分割图进行裁剪 输出为506*506*21

 

通过源码我们可以看到,先实现过程中,并不是像上边图片上画的输入和输出尺寸相同,存在一定偏差,这也是因为,作者在第一次卷积的时候进行一次100的padding,是为了防止图像过小,缩小32次后,特征无法反向传播回去,然后最后根据多次cropping,将不同尺寸的特征图调整完相同的尺寸,最终得到506*506的输入图

这篇关于[深度学习从入门到女装]FCN的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/306820

相关文章

MySQL DQL从入门到精通

《MySQLDQL从入门到精通》通过DQL,我们可以从数据库中检索出所需的数据,进行各种复杂的数据分析和处理,本文将深入探讨MySQLDQL的各个方面,帮助你全面掌握这一重要技能,感兴趣的朋友跟随小... 目录一、DQL 基础:SELECT 语句入门二、数据过滤:WHERE 子句的使用三、结果排序:ORDE

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

Python中OpenCV与Matplotlib的图像操作入门指南

《Python中OpenCV与Matplotlib的图像操作入门指南》:本文主要介绍Python中OpenCV与Matplotlib的图像操作指南,本文通过实例代码给大家介绍的非常详细,对大家的学... 目录一、环境准备二、图像的基本操作1. 图像读取、显示与保存 使用OpenCV操作2. 像素级操作3.

Spring Boot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)

《SpringBoot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)》:本文主要介绍SpringBoot拦截器Interceptor与过滤器Filter深度解析... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现与实

MyBatis分页插件PageHelper深度解析与实践指南

《MyBatis分页插件PageHelper深度解析与实践指南》在数据库操作中,分页查询是最常见的需求之一,传统的分页方式通常有两种内存分页和SQL分页,MyBatis作为优秀的ORM框架,本身并未提... 目录1. 为什么需要分页插件?2. PageHelper简介3. PageHelper集成与配置3.

Maven 插件配置分层架构深度解析

《Maven插件配置分层架构深度解析》:本文主要介绍Maven插件配置分层架构深度解析,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Maven 插件配置分层架构深度解析引言:当构建逻辑遇上复杂配置第一章 Maven插件配置的三重境界1.1 插件配置的拓扑

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示

POI从入门到实战轻松完成EasyExcel使用及Excel导入导出功能

《POI从入门到实战轻松完成EasyExcel使用及Excel导入导出功能》ApachePOI是一个流行的Java库,用于处理MicrosoftOffice格式文件,提供丰富API来创建、读取和修改O... 目录前言:Apache POIEasyPoiEasyExcel一、EasyExcel1.1、核心特性