Python 编写 Flink 应用程序经验记录(Flink1.17.1)

2023-10-29 22:45

本文主要是介绍Python 编写 Flink 应用程序经验记录(Flink1.17.1),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

官方API文档

提交作业到集群运行

官方示例

环境

实例处理Kafka后入库到Mysql

下载依赖

读取kafka数据

写入mysql数据


官方API文档

https://nightlies.apache.org/flink/flink-docs-release-1.17/zh/docs/dev/python/overview/

https://nightlies.apache.org/flink/flink-docs-release-1.17/zh/docs/connectors/datastream/kafka/

提交作业到集群运行

#! /usr/bin/env python
# -*- coding: utf-8 -*-# /opt/test_flink.py
if __name__ == "__main__":print("这是一个简单的测试用例")

flink 安装目录下的 examples 目录里面已经提供了一些测试案例,我们也可以直接拿它来做实验。

提交至集群

./bin/flink run -py 代码文件

通过 flink run 即可运行应用程序,由于 flink 既可运行 Java 程序、也可以运行 Python 程序,所以这里我们需要指定 -py 参数,表示运行的是 py 文件。但默认情况下解释器使用的 python2,当然如果你终端输入 python 进入的就是 python3 的话则当我没说,要是我们想指定 flink 使用 python3 解释器的话,则需要配置一个环境变量。

export PYFLINK_CLIENT_EXECUTABLE=/usr/bin/python3

下面来测试一下:

./bin/flink run -py /opt/test_flink.py

很明显结果是成功的,当然这里面没有涉及到任何与 Flink 有关的内容,只是演示如何提交一个 Python 应用程序。当然 flink run 是同时支持 Java、Python 等语言的。

不管使用哪种 API 进行编程,最终客户端都会生成 JobGraph 提交到 JM 上。但毕竟 Flink 的内核是采用 Java 语言编写的,如果 Python 应用程序变成 JobGraph 对象被提交到 Flink 集群上运行的话,那么 Python 虚拟机和 Java 虚拟机之间一定有某种方式,使得 Python 可以直接动态访问 Java 中的对象、Java 也可以回调 Python 中的对象。没错,实现这一点的便是 py4j。

提交单个 py 文件知道怎么做了,但如果该文件还导入了其它文件该怎么办呢?一个项目中还会涉及到包的存在。其实不管项目里的文件有多少,启动文件只有一个,只需要把这个启动文件提交上去即可。举例说明,当然这里仍不涉及具体和 Flink 相关的内容,先把如何提交程序这一步给走通。因为不管编写的程序多复杂,提交这一步骤是不会变的。

先来看看编写的程序:

flink_test 就是主目录,里面有一个 apps 子目录和一个 main.py 文件,apps 目录里面有三个 py 文件,对应的内容分别如图所示。然后将其提交到 Flink Standalone 集群上运行,命令和提交单个文件是一样的

即使是多文件,提交方式也是相似的,输出结果表明提交成功了。

官方示例

环境

  • Java 11
  • Python 3.7, 3.8, 3.9 or 3.10
python -m pip install apache-flink==1.17.1

编写 Flink Python Table API 程序的第一步是创建 TableEnvironment。这是 Python Table API 作业的入口类。

t_env = TableEnvironment.create(EnvironmentSettings.in_streaming_mode())
t_env.get_config().set("parallelism.default", "1")

接下来,我们将介绍如何创建源表和结果表。

t_env.create_temporary_table('source',TableDescriptor.for_connector('filesystem').schema(Schema.new_builder().column('word', DataTypes.STRING()).build()).option('path', input_path).format('csv').build())
tab = t_env.from_path('source')t_env.create_temporary_table('sink',TableDescriptor.for_connector('filesystem').schema(Schema.new_builder().column('word', DataTypes.STRING()).column('count', DataTypes.BIGINT()).build()).option('path', output_path).format(FormatDescriptor.for_format('canal-json').build()).build())

你也可以使用 TableEnvironment.execute_sql() 方法,通过 DDL 语句来注册源表和结果表:

my_source_ddl = """create table source (word STRING) with ('connector' = 'filesystem','format' = 'csv','path' = '{}')
""".format(input_path)my_sink_ddl = """create table sink (word STRING,`count` BIGINT) with ('connector' = 'filesystem','format' = 'canal-json','path' = '{}')
""".format(output_path)t_env.execute_sql(my_source_ddl)
t_env.execute_sql(my_sink_ddl)

上面的程序展示了如何创建及注册表名分别为 source 和 sink 的表。 其中,源表 source 有一列: word,该表代表了从 input_path 所指定的输入文件中读取的单词; 结果表 sink 有两列: word 和 count,该表的结果会输出到 output_path 所指定的输出文件中。

接下来,我们介绍如何创建一个作业:该作业读取表 source 中的数据,进行一些变换,然后将结果写入表 sink

最后,需要做的就是启动 Flink Python Table API 作业。上面所有的操作,比如创建源表 进行变换以及写入结果表的操作都只是构建作业逻辑图,只有当 execute_insert(sink_name) 被调用的时候, 作业才会被真正提交到集群或者本地进行执行。

@udtf(result_types=[DataTypes.STRING()])
def split(line: Row):for s in line[0].split():yield Row(s)# 计算 word count
tab.flat_map(split).alias('word') \.group_by(col('word')) \.select(col('word'), lit(1).count) \.execute_insert('sink') \.wait()

该教程的完整代码如下:

import argparse
import logging
import sysfrom pyflink.common import Row
from pyflink.table import (EnvironmentSettings, TableEnvironment, TableDescriptor, Schema,DataTypes, FormatDescriptor)
from pyflink.table.expressions import lit, col
from pyflink.table.udf import udtfword_count_data = ["To be, or not to be,--that is the question:--","Whether 'tis nobler in the mind to suffer","The slings and arrows of outrageous fortune","Or to take arms against a sea of troubles,","And by opposing end them?--To die,--to sleep,--","No more; and by a sleep to say we end","The heartache, and the thousand natural shocks","That flesh is heir to,--'tis a consummation","Devoutly to be wish'd. To die,--to sleep;--","To sleep! perchance to dream:--ay, there's the rub;","For in that sleep of death what dreams may come,","When we have shuffled off this mortal coil,","Must give us pause: there's the respect","That makes calamity of so long life;","For who would bear the whips and scorns of time,","The oppressor's wrong, the proud man's contumely,","The pangs of despis'd love, the law's delay,","The insolence of office, and the spurns","That patient merit of the unworthy takes,","When he himself might his quietus make","With a bare bodkin? who would these fardels bear,","To grunt and sweat under a weary life,","But that the dread of something after death,--","The undiscover'd country, from whose bourn","No traveller returns,--puzzles the will,","And makes us rather bear those ills we have","Than fly to others that we know not of?","Thus conscience does make cowards of us all;","And thus the native hue of resolution","Is sicklied o'er with the pale cast of thought;","And enterprises of great pith and moment,","With this regard, their currents turn awry,","And lose the name of action.--Soft you now!","The fair Ophelia!--Nymph, in thy orisons","Be all my sins remember'd."]def word_count(input_path, output_path):t_env = TableEnvironment.create(EnvironmentSettings.in_streaming_mode())# write all the data to one filet_env.get_config().set("parallelism.default", "1")# define the sourceif input_path is not None:t_env.create_temporary_table('source',TableDescriptor.for_connector('filesystem').schema(Schema.new_builder().column('word', DataTypes.STRING()).build()).option('path', input_path).format('csv').build())tab = t_env.from_path('source')else:print("Executing word_count example with default input data set.")print("Use --input to specify file input.")tab = t_env.from_elements(map(lambda i: (i,), word_count_data),DataTypes.ROW([DataTypes.FIELD('line', DataTypes.STRING())]))# define the sinkif output_path is not None:t_env.create_temporary_table('sink',TableDescriptor.for_connector('filesystem').schema(Schema.new_builder().column('word', DataTypes.STRING()).column('count', DataTypes.BIGINT()).build()).option('path', output_path).format(FormatDescriptor.for_format('canal-json').build()).build())else:print("Printing result to stdout. Use --output to specify output path.")t_env.create_temporary_table('sink',TableDescriptor.for_connector('print').schema(Schema.new_builder().column('word', DataTypes.STRING()).column('count', DataTypes.BIGINT()).build()).build())@udtf(result_types=[DataTypes.STRING()])def split(line: Row):for s in line[0].split():yield Row(s)# compute word counttab.flat_map(split).alias('word') \.group_by(col('word')) \.select(col('word'), lit(1).count) \.execute_insert('sink') \.wait()# remove .wait if submitting to a remote cluster, refer to# https://nightlies.apache.org/flink/flink-docs-stable/docs/dev/python/faq/#wait-for-jobs-to-finish-when-executing-jobs-in-mini-cluster# for more detailsif __name__ == '__main__':logging.basicConfig(stream=sys.stdout, level=logging.INFO, format="%(message)s")parser = argparse.ArgumentParser()parser.add_argument('--input',dest='input',required=False,help='Input file to process.')parser.add_argument('--output',dest='output',required=False,help='Output file to write results to.')argv = sys.argv[1:]known_args, _ = parser.parse_known_args(argv)word_count(known_args.input, known_args.output)

接下来,可以在命令行中运行作业(假设作业名为 word_count.py):

python word_count.py

上述命令会构建 Python Table API 程序,并在本地 mini cluster 中运行。如果想将作业提交到远端集群执行, 可以参考作业提交示例。

最后,你可以得到如下运行结果:

实例处理Kafka后入库到Mysql

下载依赖

wget https://repo.maven.apache.org/maven2/org/apache/flink/flink-sql-connector-kafka/1.17.1/flink-sql-connector-kafka-1.17.1.jar

读取kafka数据

#! /usr/bin/env python
# -*- coding: utf-8 -*-import sys
import loggingfrom pyflink.datastream import StreamExecutionEnvironment
from pyflink.common import WatermarkStrategy, Types
from pyflink.common.serialization import SimpleStringSchema
from pyflink.datastream.connectors.kafka import KafkaSource, KafkaOffsetsInitializerfrom pyflink.common import Row
from pyflink.datastream import FlatMapFunctiondef read_kafka():env = StreamExecutionEnvironment.get_execution_environment()env.add_jars("file:///D:/安技汇/运营平台/DataManage/flink-sql-connector-kafka-1.17.1.jar")source = KafkaSource.builder() \.set_bootstrap_servers("172.16.12.128:9092") \.set_topics("test") \.set_group_id("my-group") \.set_starting_offsets(KafkaOffsetsInitializer.earliest()) \.set_value_only_deserializer(SimpleStringSchema()) \.build()# 从消费组提交的位点开始消费,不指定位点重置策略#.set_starting_offsets(KafkaOffsetsInitializer.committed_offsets()) \# 从消费组提交的位点开始消费,如果提交位点不存在,使用最早位点#.set_starting_offsets(KafkaOffsetsInitializer.committed_offsets(KafkaOffsetResetStrategy.EARLIEST)) \# 从时间戳大于等于指定时间戳(毫秒)的数据开始消费#.set_starting_offsets(KafkaOffsetsInitializer.timestamp(1657256176000)) \# 从最早位点开始消费#.set_starting_offsets(KafkaOffsetsInitializer.earliest()) \# 从最末尾位点开始消费#.set_starting_offsets(KafkaOffsetsInitializer.latest()) \#.set_property("partition.discovery.interval.ms", "10000")  # 每 10 秒检查一次新分区#.set_property("security.protocol", "SASL_PLAINTEXT") \#.set_property("sasl.mechanism", "PLAIN") \#.set_property("sasl.jaas.config", "org.apache.kafka.common.security.plain.PlainLoginModule required username=\"username\" password=\"password\";")kafka_stream = env.from_source(source, WatermarkStrategy.no_watermarks(), "Kafka Source")kafka_stream.print()env.execute("Source")if __name__ == "__main__":logging.basicConfig(stream=sys.stdout, level=logging.INFO, format="%(message)s")read_kafka()

写入mysql数据

没通,待补充。。

这篇关于Python 编写 Flink 应用程序经验记录(Flink1.17.1)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/303867

相关文章

基于Python开发Windows屏幕控制工具

《基于Python开发Windows屏幕控制工具》在数字化办公时代,屏幕管理已成为提升工作效率和保护眼睛健康的重要环节,本文将分享一个基于Python和PySide6开发的Windows屏幕控制工具,... 目录概述功能亮点界面展示实现步骤详解1. 环境准备2. 亮度控制模块3. 息屏功能实现4. 息屏时间

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪

Python中图片与PDF识别文本(OCR)的全面指南

《Python中图片与PDF识别文本(OCR)的全面指南》在数据爆炸时代,80%的企业数据以非结构化形式存在,其中PDF和图像是最主要的载体,本文将深入探索Python中OCR技术如何将这些数字纸张转... 目录一、OCR技术核心原理二、python图像识别四大工具库1. Pytesseract - 经典O

基于Linux的ffmpeg python的关键帧抽取

《基于Linux的ffmpegpython的关键帧抽取》本文主要介绍了基于Linux的ffmpegpython的关键帧抽取,实现以按帧或时间间隔抽取关键帧,文中通过示例代码介绍的非常详细,对大家的学... 目录1.FFmpeg的环境配置1) 创建一个虚拟环境envjavascript2) ffmpeg-py

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

Python打印对象所有属性和值的方法小结

《Python打印对象所有属性和值的方法小结》在Python开发过程中,调试代码时经常需要查看对象的当前状态,也就是对象的所有属性和对应的值,然而,Python并没有像PHP的print_r那样直接提... 目录python中打印对象所有属性和值的方法实现步骤1. 使用vars()和pprint()2. 使

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基