一文掌握Kaplan Meier生存分析

2023-10-29 22:11

本文主要是介绍一文掌握Kaplan Meier生存分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Kaplan Meier,是一种单因素生存分析。它可用于研究1个因素对于生存时间的影响,在医疗领域中使用广泛。

一、案例说明

当前某研究人员拟观察一种新型癌症药物的疗效情况,首先将100名癌症患者随机分成两组,对照组使用传统治疗方式,实验组使用新式药物治疗方式。并且随访时间为2年。并且以‘是否死亡’为作为结局。希望通过研究了解到新式药物是否对于生存时间带来影响。

药物组别:0代表传统治疗组;1代表新药组。

生存状态:0代表存活或失访,1代表死亡。

生存时间:定量数据。

二、操作步骤

将数据上传至SPSSAU平台,选择【实验研究】--【Kaplan Meier】。

SPSSAU默认生存状态中,用数字1代表死亡,0代表生存。

如果数据不是这样设置,可以通过【数据处理】--【数据编码】修改。

将[药物组别]放入【X(定类)】,[生存时间]放入【Y1生存时间】,[生存状态]放入【Y2生存状态】。点击开始分析。

Kaplan Meier

三、结果分析

1 模型基本描述

模型基本描述

上表是简单描述数据基本情况。其中新药、传统治疗分别有50个样本。传统治疗组死亡43人;新式药物组死亡44人。传统治疗组中位数为9周,新药组中位数为65周,整体生存时间中位数为24.5周。

特别说明一点,通常情况下感兴趣的结局事情比例(事件占比)一般希望大于20%。

2 生存时间估计

上表格为Kaplan Meier模型得到的生存时间中位数估计值及其置信区间。由于生存时间的波动性,一般使用中位数表示整体情况(而不是使用平均值)。

从上表可知,整体研究病例生存时间估计值是36周,传统治疗的生存时间中位数是9周,但 ‘新式药物’时中位数生存时间为69周,明显高于传统治疗时的生存时间。

注:中位数是与表中小于或等于 0.50 的第一个生存概率相关联的时间。

3 假设检验

此处模型检验的原定假设为:是否放入药物组别两种情况时模型质量均一样。

从上表可知,模型拒绝原定假设(χ²=10.691,p =0.001 < 0.05),即说明本次模型构建有意义。

配对Log Rank检验用于分析两两组别生存时间估计值差异性。

从上表可知,模型拒绝原假设,P<0.05,说明两组之间生存时间存在显著性差异。

4 生存曲线

上图可以明显的看出,‘新式药物’的生存率会明显的高于‘传统治疗’方案。而且‘新式药物’时,0~80周时生存率下降的幅度相对较小,但在80周后生存率下降幅度加大。‘传统治疗’方案来看,0~20周生存率下降非常明显,20周后生存率下降幅度相对较为稳定。无论如何,新式药物的生存率都会明显的高于传统治疗方案,整体说明,‘新式药物’起着明显的作用。

四、其他说明

(1)Kaplan Meier共有两个因变量(一个是生存时间,另外一个是生存状态);缺一不可。

(2)“生存状态”项只能为1和0; 1表示死亡,0表示生存;或者1表示阳性,0表示阴性;1表示放弃,0表示坚持,诸如此类等。数字1用于标识研究感兴趣的结局事件已经发生。

(3)Kaplan Meier只研究1个因素的生存情况,如果有多个因素即多个X时,需要使用Cox回归

以上就是本次分享内容,登录SPSSAU官网了解更多内容。

这篇关于一文掌握Kaplan Meier生存分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/303683

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方

一文解密Python进行监控进程的黑科技

《一文解密Python进行监控进程的黑科技》在计算机系统管理和应用性能优化中,监控进程的CPU、内存和IO使用率是非常重要的任务,下面我们就来讲讲如何Python写一个简单使用的监控进程的工具吧... 目录准备工作监控CPU使用率监控内存使用率监控IO使用率小工具代码整合在计算机系统管理和应用性能优化中,监

SpringBoot中六种批量更新Mysql的方式效率对比分析

《SpringBoot中六种批量更新Mysql的方式效率对比分析》文章比较了MySQL大数据量批量更新的多种方法,指出REPLACEINTO和ONDUPLICATEKEY效率最高但存在数据风险,MyB... 目录效率比较测试结构数据库初始化测试数据批量修改方案第一种 for第二种 case when第三种

解决1093 - You can‘t specify target table报错问题及原因分析

《解决1093-Youcan‘tspecifytargettable报错问题及原因分析》MySQL1093错误因UPDATE/DELETE语句的FROM子句直接引用目标表或嵌套子查询导致,... 目录报js错原因分析具体原因解决办法方法一:使用临时表方法二:使用JOIN方法三:使用EXISTS示例总结报错原