C++之lambda匿名、using、typedef总结【全】(二百四十九)

2023-10-29 21:44

本文主要是介绍C++之lambda匿名、using、typedef总结【全】(二百四十九),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长!

优质专栏:Audio工程师进阶系列原创干货持续更新中……】🚀

人生格言: 人生从来没有捷径,只有行动才是治疗恐惧和懒惰的唯一良药.

更多原创,欢迎关注:Android系统攻城狮

欢迎关注Android系统攻城狮

1.前言

本篇目的:理解C++之lambda匿名函数、typedef、using等用法

2.C++之lambda匿名、using、typedef介绍

1.lambda介绍

  • Lambda函数是一种匿名函数,可以在C++中使用。它提供了一种简洁的方式来定义和使用临时的函数对象。Lambda函数通过使用方便的语法来简化函数对象的创建过程,使代码更加简洁和易读。

Lambda函数的基本语法如下:

[capture list] (parameters) -> return_type { function_body }
  • Capture列表:指定Lambda函数所捕获的外部变量。它可以是值捕获(通过值进行拷贝)或引用捕获(通过引用进行访问)的方式。
  • 参数列表:指定Lambda函数的参数。
  • 返回类型:指定Lambda函数的返回类型(可以省略,编译器会自动推断)。
  • 函数体:实现Lambda函数的具体逻辑。

3.lambda匿名、using、typedef介绍

  1. Lambda匿名函数:
    Lambda函数是一种匿名函数,允许我们在需要函数对象的地方定义临时的、即时的函数逻辑。它的语法如下:
[capture list] (parameters) -> return_type { function_body }
  • Capture列表(可选): 指定Lambda函数所捕获的外部变量。
  • 参数列表: 指定Lambda函数的参数。
  • 返回类型(可选): 指定Lambda函数的返回类型。如果不指定,则编译器会自动推断。
  • 函数体: 实现Lambda函数的具体逻辑。

Lambda函数可以用于算法函数、STL容器的处理、回调函数等地方,可以使代码更加简洁和易读。

  1. using声明:
    Using声明在C++中用来引入一个特定的类型或命名空间,以便在当前作用域中使用。它的语法如下:
using name = type;

这里的name是我们定义的别名,type是需要引入的类型。

Using声明可以用来简化复杂的类型名称,或者引入命名空间中的类型。例如:

using IntVector = std::vector<int>;IntVector numbers = {1, 2, 3, 4, 5};

这里,我们使用了using声明引入了std::vector<int>类型的别名IntVector,从而将其简化为更易读的名称。

  1. typedef声明:
    Typedef声明也是用来引入一个特定的类型别名,以便在当前作用域中使用。它的语法如下:
typedef type name;

这里的type是我们需要引入的类型,name是我们定义的别名。

Typedef声明的作用和using声明类似,它也可以用来简化复杂的类型名称。例如:

typedef std::vector<int> IntVector;IntVector numbers = {1, 2, 3, 4, 5};

这里,我们使用了typedef声明将std::vector<int>类型定义为IntVector,从而使代码更加易读。

总结:
Lambda函数提供了一种简洁的方式来定义匿名函数,using声明和typedef声明提供了简化类型名称的能力。这些工具可以使代码更加清晰、易读和易于维护。

3.代码实例

v1.0 函数调用实例

#include <iostream>
#include <string>
#include <functional>typedef std::function<int(int x, int y)> Callback ;
using UCallback = std::function<int(int x, int y)> ;//v1.0
int call_add(std::function<int(int x, int y)> call){int a = 100, b=500;call(a, b);//传值a,b给调用者.return a+b;
}//v2.0: 与以上等同:使用typedef定义Callback类型别名定义
int call_add_01(Callback call){int a = 100, b=500;call(a, b);//传值a,b给调用者.return a+b;
}//v3.0: 与以上等同:使用using定义UCallback类型别名定义
int call_add_02(UCallback call){int a = 100, b=500;call(a, b);//传值a,b给调用者.return a+b;
}int main() {//v1.0:匿名lambda函数,无参数,无返回值.[](){printf("xxx----->%s(), line = %d\n",__FUNCTION__,__LINE__);}();//v2.0:匿名lambda函数,带string参数,无返回值.[](std::string content){printf("xxx----->%s(), line = %d, content = %s\n",__FUNCTION__,__LINE__,content.c_str());}("Hello Wolrd.");//v3.0:匿名lambda函数,带string和int类型参数,无返回值.std::string buf = "Hello, C++!";int year = 2023;[](std::string buf, int years){printf("xxx----->%s(), line = %d, buf = %s, years = %d\n",__FUNCTION__,__LINE__,buf.c_str(), years);}(buf, year);//v3.1: lambda带返回值int moth = [](std::string buf, int years){printf("xxx----->%s(), line = %d, buf = %s, years = %d\n",__FUNCTION__,__LINE__,buf.c_str(), years);int month = 10;return month;}(buf, year);printf("xxx----->%s(), line = %d, moth = %d\n",__FUNCTION__,__LINE__,moth);//4.0: 使用typedef创建别名类型Callback,然后调用回调函数.Callback add = [](int a, int b)->int {printf("xxx---------->%s(), line = %d, a = %d, b = %d\n",__FUNCTION__,__LINE__,a,b);return a + b;};printf("xxx----->%s(), line = %d, add = %d\n",__FUNCTION__,__LINE__,add(2, 3));//v5.0: 使用typedef定义回调函数类型别名int ret1 = call_add(add);printf("xxx----->%s(), line = %d, ret1 = %d\n",__FUNCTION__,__LINE__,ret1);//v6.0: 直接使用lambda匿名回调函数int ret2 = call_add([](int x, int y)->int{return x + y;});printf("xxx----->%s(), line = %d, ret2 = %d\n",__FUNCTION__,__LINE__,ret2);//v7.0: 使用typedef定义回调函数类型别名int ret3 = call_add_01(add);printf("xxx----->%s(), line = %d, ret3 = %d\n",__FUNCTION__,__LINE__,ret3);//v8.0: 使用using定义回调函数类型别名int ret4 = call_add_02(add);printf("xxx----->%s(), line = %d, ret4 = %d\n",__FUNCTION__,__LINE__,ret4);//v9.0: 直接使用lambda匿名回调函数int ret5 = call_add_02([](int x, int y)->int{return x + y;});printf("xxx----->%s(), line = %d, ret5 = %d\n",__FUNCTION__,__LINE__,ret5);return 0;
}

v2.0 类指针、引用、指针的引用实例01

#include <iostream>
#include <string>
#include <memory>
#include <functional>class TEST{
public:void log(){printf("xxx--------->%s(), line = %d\n",__FUNCTION__,__LINE__);}TEST(){printf("xxx--------->%s(), line = %d\n",__FUNCTION__,__LINE__);}TEST(std::shared_ptr<TEST> &test){printf("xxx--------->%s(), line = %d\n",__FUNCTION__,__LINE__);}
};//1.typedef定义:typedef 类型 别名.
typedef std::function<void(std::shared_ptr<TEST> &test)> Callback ;
//2.using定义:using 别名 = 类型.
using UCallback = std::function<void(std::shared_ptr<TEST> &test)> ;void callback_test(std::function<void(std::shared_ptr<TEST> &test)> func){std::shared_ptr<TEST> tt = std::make_shared<TEST>();func(tt);
}int main() {//v1.0: lambda匿名函数返回指针TEST*类型,无参数TEST *t1 = [&]()->TEST*{return new TEST;}();t1->log();//v1.1TEST *t12 = [&]()->TEST*{return new TEST;}();t12->log();//2.0: lambda匿名函数返回TEST类型指针对象,无参数TEST t2 = [&]()->TEST{return TEST{}; //TEST{}创建对象方式}();t2.log();//v2.1: TEST()创建对象方式TEST t21 = [&]()->TEST{return TEST();}();t21.log();//3.0: lambda匿名函数返回TEST类型指针对象,无返回值TEST *t3;[&](TEST *tr){tr = new TEST;}(t3);t3->log();//4.0: lambda匿名函数返回TEST类型指针的引用对象,无返回值TEST *t4;[&](TEST* &tr){//指针的引用tr = new TEST();}(t4);t4->log();//5.0: lambda匿名函数返回TEST类型shared_ptr指针对象,无返回值std::shared_ptr<TEST> t5;[&](std::shared_ptr<TEST> tr){//指向TEST类型shared_ptr指针对象tr = std::make_shared<TEST>();}(t5);t5->log();//6.0: lambda匿名函数返回TEST类型shared_ptr指针的引用对象,无返回值std::shared_ptr<TEST> t6;[&](std::shared_ptr<TEST> &tr){//指向TEST类型shared_ptr指针的引用的对象,即make_shared<TEST>()指针对象的别名.tr = std::make_shared<TEST>();}(t6);t6->log();//7.0: lambda匿名函数返回TEST类型shared_ptr指针的引用对象std::shared_ptr<TEST> t7;[&](std::shared_ptr<TEST> &tr)->std::shared_ptr<TEST> {//指向TEST类型shared_ptr指针的引用的对象,即make_shared<TEST>()指针对象的别名.//tr = std::make_shared<TEST>();return std::make_shared<TEST>(tr);}(t7);t7->log();//8.0: lambda匿名函数返回TEST类型shared_ptr指针的引用对象,有返回值和参数./*t8和t8.get()区别:t8是一个std::shared_ptr<TEST>类型的共享指针,指向一个TEST对象.t8.get(): 返回的是一个指向同一对象的原始指针.*/std::shared_ptr<TEST> t8;[&](void* tr) -> std::shared_ptr<TEST> {return std::make_shared<TEST>(static_cast<TEST*>(tr));}(t8.get());t8->log();//9.0std::shared_ptr<TEST> t10;callback_test([&](std::shared_ptr<TEST>& tr) -> void {t10 = tr;});t10->log();return 0;
}

v3.0 类指针、引用、指针的引用实例02

#include <iostream>
#include <string>
#include <memory>
#include <functional>class TEST{
public:void log(){printf("xxx--------->%s(), line = %d\n",__FUNCTION__,__LINE__);}TEST(){printf("xxx--------->%s(), line = %d\n",__FUNCTION__,__LINE__);}TEST(std::shared_ptr<TEST> &test){printf("xxx--------->%s(), line = %d\n",__FUNCTION__,__LINE__);}
};//1.typedef定义:typedef 类型 别名.
typedef std::function<void(std::shared_ptr<TEST> &test)> Callback ;
//2.using定义:using 别名 = 类型.
using UCallback = std::function<void(std::shared_ptr<TEST> &test)> ;void callback_test(std::function<void(std::shared_ptr<TEST> &test)> func){std::shared_ptr<TEST> tt = std::make_shared<TEST>();func(tt);
}std::shared_ptr<TEST> callback_ret(){//std::shared_ptr<TEST> tt = std::make_shared<TEST>();//return tt;return std::make_shared<TEST>();
}int main() {//v1.0std::shared_ptr<TEST> t1= callback_ret();t1->log();//v2.0std::shared_ptr<TEST> t2;callback_test([&](std::shared_ptr<TEST> &tr) -> void {t2 = tr;});t2->log();return 0;
}

C++中shared_ptr和shared_ptr::get()实现

template<typename T>
class shared_ptr {
public:explicit shared_ptr(T* ptr = nullptr) : ptr_(ptr), ref_count_(new int(1)) {}~shared_ptr() {if (--(*ref_count_) == 0) {delete ptr_;delete ref_count_;}}shared_ptr(const shared_ptr& other) : ptr_(other.ptr_), ref_count_(other.ref_count_) {++(*ref_count_);}shared_ptr& operator=(const shared_ptr& other) {if (this != &other) {if (--(*ref_count_) == 0) {delete ptr_;delete ref_count_;}ptr_ = other.ptr_;ref_count_ = other.ref_count_;++(*ref_count_);}return *this;}T* get() const {return ptr_;}private:T* ptr_;               // 指向所管理的对象的原始指针int* ref_count_;       // 引用计数,记录共享此对象的智能指针数量
};

shared_ptr类维护了一个指针ptr_和一个计数器ref_count_。每当有新的shared_ptr指向相同的对象时,ref_count_会递增。当没有shared_ptr指向该对象时,ref_count_会减少并在变为零时释放资源。

get()函数的实现非常简单,它只需返回私有成员ptr_,即所管理的对象原始指针。

这篇关于C++之lambda匿名、using、typedef总结【全】(二百四十九)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/303543

相关文章

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Spring 依赖注入与循环依赖总结

《Spring依赖注入与循环依赖总结》这篇文章给大家介绍Spring依赖注入与循环依赖总结篇,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. Spring 三级缓存解决循环依赖1. 创建UserService原始对象2. 将原始对象包装成工

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

C++ STL-string类底层实现过程

《C++STL-string类底层实现过程》本文实现了一个简易的string类,涵盖动态数组存储、深拷贝机制、迭代器支持、容量调整、字符串修改、运算符重载等功能,模拟标准string核心特性,重点强... 目录实现框架一、默认成员函数1.默认构造函数2.构造函数3.拷贝构造函数(重点)4.赋值运算符重载函数

C++ vector越界问题的完整解决方案

《C++vector越界问题的完整解决方案》在C++开发中,std::vector作为最常用的动态数组容器,其便捷性与性能优势使其成为处理可变长度数据的首选,然而,数组越界访问始终是威胁程序稳定性的... 目录引言一、vector越界的底层原理与危害1.1 越界访问的本质原因1.2 越界访问的实际危害二、基

c++日志库log4cplus快速入门小结

《c++日志库log4cplus快速入门小结》文章浏览阅读1.1w次,点赞9次,收藏44次。本文介绍Log4cplus,一种适用于C++的线程安全日志记录API,提供灵活的日志管理和配置控制。文章涵盖... 目录简介日志等级配置文件使用关于初始化使用示例总结参考资料简介log4j 用于Java,log4c

C++归并排序代码实现示例代码

《C++归并排序代码实现示例代码》归并排序将待排序数组分成两个子数组,分别对这两个子数组进行排序,然后将排序好的子数组合并,得到排序后的数组,:本文主要介绍C++归并排序代码实现的相关资料,需要的... 目录1 算法核心思想2 代码实现3 算法时间复杂度1 算法核心思想归并排序是一种高效的排序方式,需要用

Python lambda函数(匿名函数)、参数类型与递归全解析

《Pythonlambda函数(匿名函数)、参数类型与递归全解析》本文详解Python中lambda匿名函数、灵活参数类型和递归函数三大进阶特性,分别介绍其定义、应用场景及注意事项,助力编写简洁高效... 目录一、lambda 匿名函数:简洁的单行函数1. lambda 的定义与基本用法2. lambda