多种群遗传算法的函数寻优算法

2023-10-29 17:20

本文主要是介绍多种群遗传算法的函数寻优算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

多种群遗传算法的函数寻优算法

  • 多种群遗传算法的介绍
  • 问题与思路
  • 代码
  • 结果显示

多种群遗传算法的介绍

传统的遗传算法是一种借鉴于生物界自然选择和进化机制发展起来的高度并行、随机、自适应的全局优化概率搜索算法。因为优化时不依赖于梯度,具有很强的鲁棒性和全局搜索能力。但是未成熟收敛确实遗传算法中不可忽视的现象,它主要表现为所有个体都区域同一状态而停止进化。

接下来所介绍的多种群遗传算法可以很好地解决这个问题。

多种群遗传算法主要引入了这几个概念。
1.突破SGA仅靠单个种群进行遗传进化的框架,引入多个种群进行全局搜索,不同种群用不同参数,实现不同的搜索目的。2.各种群之间通过移民算子进行联系,实现了多种群协同进化,最优解是多个种群共同进化的结果,3.通过人工算子保留每代中的最优个体,并作为判断收敛的依据。
在这里插入图片描述

问题与思路

在这里插入图片描述
这里是谢尔德工具箱的下载地址,大家可以自行前往gatbx

代码

话不多说,看Matlab代码:

% 多种群遗传算法主函数
clear
clc
nind = 40;
nvar = 1;
preci = 20;
ggap = 0.9;     % 代沟
mp = 10;    % 种群数目
field = [preci;0;1;1;0;1;1];    % 区域描述器
for i = 1:mpchrom{i} = crtbp(nind,nvar*preci);
end
gen = 0;
pc = 0.7 + (0.9-0.7)*rand(mp,1);
pm = 0.001 + (0.05-0.001)*rand(mp,1);
gen0 = 0;
maxgen = 10;
maxy = 0;   % 最优值
% 计算各初始种群的适应度
for i = 1:mpobjv{i} = objf(bs2rv(chrom{i},field));
end
maxobjv = zeros(mp,1);      % 记录精华种群
maxchrom = zeros(mp,preci*nvar);        % 记录精华种群的二进制编码
while gen0 < maxgengen = gen + 1;for i = 1:mp% 各种群的适应度fitnv{i} = ranking(-objv{i});% 选择selch{i} = select('sus',chrom{i},fitnv{i},ggap);% 交叉selch{i} = recombin('xovsp',selch{i},pc(i));% 变异selch{i} = mut(selch{i},pm(i));% 计算子代目标值objvesl = objf(bs2rv(selch{i},field));% 重插入工作[chrom{i},objv{i}] = reins(chrom{i},selch{i},1,1,objv{i},objvesl);end% 移民操作[chrom,objv] = immigrant(chrom,objv);% 人工选择精华种群[maxobjv,maxchrom] = elite(chrom,objv,maxobjv,maxchrom);yy(gen) = max(maxobjv);if yy(gen) > maxymaxy = yy(gen);gen0 = 0;elsegen0 = gen0 + 1;end
end
% 画图
plot(1:gen,yy)
xlabel('进化代数')
ylabel('最优解变化')
title('进化过程')
xlim([1,gen])
% 输出最优解
[y,i] = max(maxobjv);
x = bs2rv(maxchrom(i,:),field);
disp(['最优值为:',num2str(y)])
disp(['对应的自变量取值为:',num2str(x)])function obj = objf(x)
% 目标函数
[row,~] = size(x);
for i = 1:rowobj(i,1) = exp(((x(i,1)-0.1)/0.8)^2)*(sin(5*pi*x(i,1)))^6;
end

这里是谢尔德工具箱的下载地址,大家可以自行前往gatbx

结果显示

在这里插入图片描述
在这里插入图片描述
可以见到,多种群遗传算法对于函数寻优的效果很好,很快就得到收敛找到最优值。相较于传统的遗传算法,一般问题都需要几十代或几百代来说,效果非常好。

这篇关于多种群遗传算法的函数寻优算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/302153

相关文章

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

Linux实现线程同步的多种方式汇总

《Linux实现线程同步的多种方式汇总》本文详细介绍了Linux下线程同步的多种方法,包括互斥锁、自旋锁、信号量以及它们的使用示例,通过这些同步机制,可以解决线程安全问题,防止资源竞争导致的错误,示例... 目录什么是线程同步?一、互斥锁(单人洗手间规则)适用场景:特点:二、条件变量(咖啡厅取餐系统)工作流

Python中bisect_left 函数实现高效插入与有序列表管理

《Python中bisect_left函数实现高效插入与有序列表管理》Python的bisect_left函数通过二分查找高效定位有序列表插入位置,与bisect_right的区别在于处理重复元素时... 目录一、bisect_left 基本介绍1.1 函数定义1.2 核心功能二、bisect_left 与

java中BigDecimal里面的subtract函数介绍及实现方法

《java中BigDecimal里面的subtract函数介绍及实现方法》在Java中实现减法操作需要根据数据类型选择不同方法,主要分为数值型减法和字符串减法两种场景,本文给大家介绍java中BigD... 目录Java中BigDecimal里面的subtract函数的意思?一、数值型减法(高精度计算)1.

C++/类与对象/默认成员函数@构造函数的用法

《C++/类与对象/默认成员函数@构造函数的用法》:本文主要介绍C++/类与对象/默认成员函数@构造函数的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录名词概念默认成员函数构造函数概念函数特征显示构造函数隐式构造函数总结名词概念默认构造函数:不用传参就可以

C++类和对象之默认成员函数的使用解读

《C++类和对象之默认成员函数的使用解读》:本文主要介绍C++类和对象之默认成员函数的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、默认成员函数有哪些二、各默认成员函数详解默认构造函数析构函数拷贝构造函数拷贝赋值运算符三、默认成员函数的注意事项总结一

Python函数返回多个值的多种方法小结

《Python函数返回多个值的多种方法小结》在Python中,函数通常用于封装一段代码,使其可以重复调用,有时,我们希望一个函数能够返回多个值,Python提供了几种不同的方法来实现这一点,需要的朋友... 目录一、使用元组(Tuple):二、使用列表(list)三、使用字典(Dictionary)四、 使

使用Python获取JS加载的数据的多种实现方法

《使用Python获取JS加载的数据的多种实现方法》在当今的互联网时代,网页数据的动态加载已经成为一种常见的技术手段,许多现代网站通过JavaScript(JS)动态加载内容,这使得传统的静态网页爬取... 目录引言一、动态 网页与js加载数据的原理二、python爬取JS加载数据的方法(一)分析网络请求1