OpenVINO 2021r2 - Remote Blob API of GPU Plugin 示例复现(二) Inference within User-Supplied Shared Contex

本文主要是介绍OpenVINO 2021r2 - Remote Blob API of GPU Plugin 示例复现(二) Inference within User-Supplied Shared Contex,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

今天再试试官方文档Remote Blob API of GPU Plugin里面的另一个例子Running GPU Plugin Inference within User-Supplied Shared Context,大概的意思就是由用户提供自己的OpenCL context,OpenVINO的clDNN利用用户共享的context来跑inference (对应的场景应该是用户已经有了自己的OpenCL实现的应用,然后要把OpenVINO GPU推理功能集成进自己应用的场景)。

 

官网的例子只给出了一部分代码片段,看的云山雾罩的,但是有了前一次的经验,感觉实现起来并不难,大致就是利用用户OCL对象的context来转换成remote context,创建ExecuableNetwork的时候把remote context传进去,这样clDNN里面所有OCL的操作都会基于用户提供这个context, 而不会创建自己独立的context. 另外输入输出的数据共享可以通过shared blob把OV推理网络的输入和输出层的数据指向用户自己创建的cl_mem内存对象即可。

 

GPU RemoteBlob API推理代码的实现

		/********************* Init OpenCL Device ***************************************///模拟3个用户从外面传进来的OpenCL对象(user_context,user_device,user_queue) 后面的//OpenVINO的IE clDNN都基于这个用户提供的OpenCL context来创建cl::Context user_context;cl::Device user_device;cl::CommandQueue user_queue;// get Intel iGPU OCL device, create context and queue{const unsigned int refVendorID = 0x8086;cl_uint n = 0;cl_int err = clGetPlatformIDs(0, NULL, &n);// Get platform liststd::vector<cl_platform_id> platform_ids(n);err = clGetPlatformIDs(n, platform_ids.data(), NULL);for (auto& id : platform_ids) {cl::Platform platform = cl::Platform(id);std::vector<cl::Device> devices;platform.getDevices(CL_DEVICE_TYPE_GPU, &devices);for (auto& d : devices) {if (refVendorID == d.getInfo<CL_DEVICE_VENDOR_ID>()) {user_device = d;user_context = cl::Context(user_device);break;}}}cl_command_queue_properties props = CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE;user_queue = cl::CommandQueue(user_context, user_device, props);}.../*********** 开始演示OpenVINO Shared GPU context的用法 *******************//* 使用这种方法 IE/clDNN初始化时不会自己创建新的OpenCL ctx, 而是基于用户提供的OCL ctx来创建 *///create remote context, 先基于用户的OCL ctx创建remote contextauto remote_context = gpu::make_shared_context(ie, FLAGS_d, user_context.get());//创建shared execute network时, clDNN基于remote OCL context来初始化auto exec_net_shared = ie.LoadNetwork(network, remote_context);// inference using remote blobauto inf_req_shared = exec_net_shared.CreateInferRequest();auto dims = network.getInputsInfo().begin()->second->getTensorDesc().getDims();size_t imSize = dims[1] * dims[2] * dims[3];cout << "imSize = " << imSize << " dims[1]=" << dims[1] << " dims[2]=" << dims[2] << " dims[3]=" << dims[3] << endl << endl;size_t num_channels = dims[1];size_t image_size = dims[3] * dims[2];//prepare input image data/** Iterate over all pixel in image (b,g,r) **/unsigned char *ImageBuffer;ImageBuffer = (unsigned char *)malloc(imSize);unsigned char* pixels = (unsigned char*)(jpg.data);for (size_t pid = 0; pid < image_size; pid++) {/** Iterate over all channels **/for (size_t ch = 0; ch < num_channels; ++ch) {/**          [images stride + channels stride + pixel id ] all in bytes            **/ImageBuffer[ch * image_size + pid] = pixels[pid*num_channels + ch];//set input data to 0//ImageBuffer[ch * image_size + pid] = 0;}}//这里模拟用户自己的OCL ctx创建的一个cl::Buffer, 用来放推理的输入数据cl_int err;cl::Buffer shared_buffer(user_context, CL_MEM_READ_WRITE, imSize, NULL, &err);{void *buffer = ImageBuffer;user_queue.enqueueWriteBuffer(shared_buffer, true, 0, imSize, buffer);}//将这个cl::Buffer转成shared blobBlob::Ptr shared_blob = gpu::make_shared_blob(network.getInputsInfo().begin()->second->getTensorDesc(), remote_context,shared_buffer);//将推理网络的输入部分指向这个shared blob, 推理时会从这个blob里读数据inf_req_shared.SetBlob(network.getInputsInfo().begin()->first, shared_blob);//这里是已知用的是squeezenet, 输出是1000个FP32的数据,所以创建2个FP32 [1000]的数组size_t outputSize = 1000 * 4;float *C = new float[1000];float *D = new float[1000];for (int i = 0; i < 1000; i++){C[i] = 0;D[i] = 0;}//这里模拟用户自己的OCL ctx创建的一个cl::Buffer, 用来放推理输出的数据cl::Buffer shared_output_buffer(user_context, CL_MEM_READ_WRITE, outputSize, NULL, &err);{void *buffer = ImageBuffer;//将输出Buffer清零user_queue.enqueueWriteBuffer(shared_output_buffer, true, 0, sizeof(float)*1000, C);}//将输出的cl::Buffer转成shared blobBlob::Ptr shared_output_blob = gpu::make_shared_blob(network.getOutputsInfo().begin()->second->getTensorDesc(), remote_context,shared_output_buffer);//将推理网络输出数据层替换成这个shared blob, 这样推理输出的数据就会放到shared_output_buffer里inf_req_shared.SetBlob(network.getOutputsInfo().begin()->first, shared_output_blob);inf_req_shared.Infer();// Copy the output data back to the host//从shared_output_buffer里读出推理结果,放到数组D里user_queue.enqueueReadBuffer(shared_output_buffer, CL_TRUE, 0, sizeof(float) * 1000, D);for (int i = 0; i < 1000; i++){//如果D数组的值大于0.0001, 则输出D数组的数据,数组的index对应1000组分类的indexif (D[i] > 0.0001){cout << "C[" << i << "] = " << C[i] << " - D[" << i << "] = " << D[i] << endl;}//可以看到输出分类信息和普通infernece输出结果一致,但是输出数据放在用户的cl::Buffer里}

 

编译运行程序,得到结果

 

和上一篇OpenCL Kernel Execution on a Shared Buffer例子的输出一致,收工 :)

 

个人感受:

OV的2个例子shared buffer和shared context的思路基本是一致的。因为GPU里运行的不同程序也和CPU这边的多进程程序一样,不同进程之间的数据是相互隔离的。所以要想共享GPU多个程序之间的数据,最简单的方法就是多个程序共享同一个OCL的context来创建, 也就是互相认干爹,有了同一个context爸爸,数据自然也就能互相访问了 :)

 

最后完整项目奉上,仅供参考

https://gitee.com/tisandman/cl_ov_sharing_ctx

这篇关于OpenVINO 2021r2 - Remote Blob API of GPU Plugin 示例复现(二) Inference within User-Supplied Shared Contex的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/301006

相关文章

HTML5 getUserMedia API网页录音实现指南示例小结

《HTML5getUserMediaAPI网页录音实现指南示例小结》本教程将指导你如何利用这一API,结合WebAudioAPI,实现网页录音功能,从获取音频流到处理和保存录音,整个过程将逐步... 目录1. html5 getUserMedia API简介1.1 API概念与历史1.2 功能与优势1.3

spring中的ImportSelector接口示例详解

《spring中的ImportSelector接口示例详解》Spring的ImportSelector接口用于动态选择配置类,实现条件化和模块化配置,关键方法selectImports根据注解信息返回... 目录一、核心作用二、关键方法三、扩展功能四、使用示例五、工作原理六、应用场景七、自定义实现Impor

mysql中insert into的基本用法和一些示例

《mysql中insertinto的基本用法和一些示例》INSERTINTO用于向MySQL表插入新行,支持单行/多行及部分列插入,下面给大家介绍mysql中insertinto的基本用法和一些示例... 目录基本语法插入单行数据插入多行数据插入部分列的数据插入默认值注意事项在mysql中,INSERT I

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

LiteFlow轻量级工作流引擎使用示例详解

《LiteFlow轻量级工作流引擎使用示例详解》:本文主要介绍LiteFlow是一个灵活、简洁且轻量的工作流引擎,适合用于中小型项目和微服务架构中的流程编排,本文给大家介绍LiteFlow轻量级工... 目录1. LiteFlow 主要特点2. 工作流定义方式3. LiteFlow 流程示例4. LiteF

MyBatis ResultMap 的基本用法示例详解

《MyBatisResultMap的基本用法示例详解》在MyBatis中,resultMap用于定义数据库查询结果到Java对象属性的映射关系,本文给大家介绍MyBatisResultMap的基本... 目录MyBATis 中的 resultMap1. resultMap 的基本语法2. 简单的 resul

Mybatis Plus Join使用方法示例详解

《MybatisPlusJoin使用方法示例详解》:本文主要介绍MybatisPlusJoin使用方法示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录1、pom文件2、yaml配置文件3、分页插件4、示例代码:5、测试代码6、和PageHelper结合6

MySQL JSON 查询中的对象与数组技巧及查询示例

《MySQLJSON查询中的对象与数组技巧及查询示例》MySQL中JSON对象和JSON数组查询的详细介绍及带有WHERE条件的查询示例,本文给大家介绍的非常详细,mysqljson查询示例相关知... 目录jsON 对象查询1. JSON_CONTAINS2. JSON_EXTRACT3. JSON_TA

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏