BOLL线——C++函数式编程实现

2023-10-29 12:50
文章标签 c++ 实现 函数 编程 boll

本文主要是介绍BOLL线——C++函数式编程实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

BOLL线原理

BOLL线使用

代码试验

试验结果


 

BOLL线原理

BOLL线由上线、中线、下线组成。中线是R_N日内的股票收盘价均值,上线是均值加上2个标准差,下线是均值减去2个标准差。BOLL线的内在逻辑是这样的:收盘价格在采样区间内的分布概率是正态分布,而正态分布大概率是在均值加减2个方差的范围内(约95.45%)。所以明日价格在上线和下线之间事最有可能的,不大可能超过这个范围。一下为2023年2月17日的沪金2303的BOLL线,可以看出来虽然大部分的收盘价格都在上线和下线之间,不过也有部分偏出。

BOLL线使用

 对于标的收盘价格在一定区间内符合正态分布这个先验条件我们需要打一个问号,不过姑且认为是这样的吧,必经大范围的价格波动发生的很少,这个直观感受和正态分布较为类似。那么我们需要了解BOLL线能做什么,看BOLL线能得出什么有用的信息。我觉得BOLL线可以根据上线和中线、下线和中线间的距离变化,直观的感受近期标的价格的稳定性。如果距离较大,说明价格的波动性很大,如果距离较小,说明价格较为稳定;如果距离由大变小,说明价格在趋于稳定,如果距离由小变大说明价格趋于不稳定。

中线和标的价格的对比,中线代表的是区间内的平均情况,如果标的价格线由下向上穿过中线,则说明价格已经超过最近的均值,价格开始上涨了(由于是均值,因此会在价格上涨数天之后才会表现出这个现象)。下行同理。如果标的价格超过上线,则其再上升,其概率不大(如果标的价格服从正态分布继续上涨概率应该是4.55%以下),当然这个概率是不可靠的,但是可供参考,至少是部分服从实践事实的。

代码试验

试验使用N(2,1)生成一组数据,用以模拟标的价格。基于这组数据,计算其BOLL线的上、中、下线,并观察。下面是代码实现:


#include <vector>
#include <functional>
#include <exception>
#include <algorithm>
#include <numeric>
#include <math.h>template<typename val_t>
using param_t = std::vector<val_t>;template<typename val_t>
using func_t = std::function<param_t<val_t>(const param_t<val_t>&)>;template<int R_N, typename val_t>
val_t mean_cal(const param_t<val_t>& vec, const size_t& siz_begin_index)
{auto itr_beg = vec.begin() + siz_begin_index;auto itr_end = vec.begin() + siz_begin_index + R_N;if (itr_end > vec.end()){throw std::runtime_error("over range");}val_t v_sum = std::accumulate(itr_beg, itr_end, 0.0);return v_sum / static_cast<const val_t>(R_N);
}// * 计算数组均值
template<int R_N, typename val_t>
func_t<val_t> ma_gen()
{return [](const param_t<val_t>& vec){if (vec.size() < R_N)throw std::runtime_error("over range...");param_t<val_t> vec_ret;for (size_t siz_itr = 0; siz_itr < vec.size() - R_N + 1; ++siz_itr){vec_ret.push_back(mean_cal<R_N, val_t>(vec, siz_itr));}return vec_ret;};
}template<int R_N, typename val_t>
val_t varia_cal(const param_t<val_t>& vec, const size_t& siz_begin_index, const val_t& v_mean)
{auto itr_beg = vec.begin() + siz_begin_index;auto itr_end = vec.begin() + siz_begin_index + R_N;if (itr_end > vec.end()){throw std::runtime_error("over range");}val_t v_sum = std::accumulate(itr_beg, itr_end, 0.0,[&v_mean](val_t a, val_t v)->val_t{return a + (v-v_mean)*(v-v_mean);});return sqrt(v_sum / static_cast<const val_t>(R_N - 1));
}template< int R_N, typename val_t>
func_t<val_t> md_gen()
{return [](const param_t<val_t>& vec){if (vec.size() < R_N)throw std::runtime_error("over range...");param_t<val_t> vec_ret;auto ma = ma_gen<R_N, val_t>();param_t<val_t> vec_ma = ma(vec);for (size_t siz_itr = 0; siz_itr < vec_ma.size(); ++siz_itr){vec_ret.push_back(varia_cal<R_N, val_t>(vec, siz_itr, vec_ma[siz_itr]));}return vec_ret;};
}// * 中轨线
template<int R_N, typename val_t>
func_t<val_t> mb_gen()
{return [](const param_t<val_t>& vec){auto ma = ma_gen<R_N, val_t>();return ma;};
}// * 上轨线
template<int R_N, typename val_t>
func_t<val_t> up_gen()
{return [](const param_t<val_t>& vec){auto ma = ma_gen<R_N, val_t>();auto vec_ma = ma(vec);auto md = md_gen<R_N, val_t>();auto vec_md = md(vec);param_t<val_t> vec_ret(vec_md.size(), 0.0);std::transform(vec_ma.begin(), vec_ma.end(), vec_md.begin(), vec_ret.begin(), [](const val_t& v1, const val_t& v2)->val_t{return v1 + 2. * v2;});return vec_ret;};
}// * 下轨线
template<int R_N, typename val_t>
func_t<val_t> dn_gen()
{return [](const param_t<val_t>& vec){auto ma = ma_gen<R_N, val_t>();auto vec_ma = ma(vec);auto md = md_gen<R_N, val_t>();auto vec_md = md(vec);param_t<val_t> vec_ret(vec_md.size(), 0.0);std::transform(vec_ma.begin(), vec_ma.end(), vec_md.begin(), vec_ret.begin(), [](const val_t& v1, const val_t& v2)->val_t{return v1 - 2. * v2;});return vec_ret;};
}#include <random>// * 价格生成函数
double price_generate()
{static std::default_random_engine ge;static std::normal_distribution<double> ud(2., 1.);return ud(ge);
} int main(int argc, char** argv)
{std::vector<double> vec;vec.resize(50, 0.0);std::generate(vec.begin(), vec.end(), price_generate);auto md = md_gen<20, double>();auto vec_md = md(vec);printf("div:");for(auto v: vec_md){printf("%.4lf ", v);}printf("\n");auto up = up_gen<20, double>();auto vec_up = up(vec);printf("up:");for(auto v: vec_up){printf("%.4lf ", v);}printf("\n");auto ma = ma_gen<20, double>();auto vec_ma = ma(vec);printf("mid:");for(auto v: vec_ma){printf("%.4lf ", v);}printf("\n");auto dn = dn_gen<20, double>();auto vec_dn = dn(vec);printf("dn:");for(auto v: vec_dn){printf("%.4lf ", v);}printf("\n");return 0;
}

试验结果

试验结果展示如下:

可见,和我们预料的一直,中线集中于分布均值2附近,上线为4,下线为0。 

这篇关于BOLL线——C++函数式编程实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/300776

相关文章

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

MySQL常用字符串函数示例和场景介绍

《MySQL常用字符串函数示例和场景介绍》MySQL提供了丰富的字符串函数帮助我们高效地对字符串进行处理、转换和分析,本文我将全面且深入地介绍MySQL常用的字符串函数,并结合具体示例和场景,帮你熟练... 目录一、字符串函数概述1.1 字符串函数的作用1.2 字符串函数分类二、字符串长度与统计函数2.1

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符