linux网络编程之System V 信号量(三):基于生产者-消费者模型实现先进先出的共享内存段

本文主要是介绍linux网络编程之System V 信号量(三):基于生产者-消费者模型实现先进先出的共享内存段,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

生产者消费者问题:该问题描述了两个共享固定大小缓冲区的进程——即所谓的“生产者”和“消费者”——在实际运行时会发生的问题。生产者的主要作用是生成一定量的数据放到缓冲区中,然后重复此过程。与此同时,消费者也在缓冲区消耗这些数据。该问题的关键就是要保证生产者不会在缓冲区满时加入数据,消费者也不会在缓冲区中空时消耗数据。
我们可以用信号量解决生产者消费者问题,如下图:
这里写图片描述
定义3个信号量,sem_full 和 sem_empty 用于生产者进程和消费者进程之间同步,即缓冲区为空才能生产,缓冲区不为空才能消费。由于共享同一块缓冲区,在生产一个产品过程中不能生产/消费产品,在消费一个产品的过程中不能生产/消费产品,故再使用一个 sem_mutex 信号量来约束行为,即进程间互斥。

下面基于生产者消费者模型,来实现一个先进先出的共享内存段:
这里写图片描述
如上图所示,定义两个结构体,shmhead 是共享内存段的头部,保存了块大小,块数,读写索引。shmfifo 保存了共享内存头部的指针,有效负载的起始地址,创建的共享内存段的shmid,以及3个信号量集的semid。
下面来封装几个函数:

#include "shmfifo.h"
#include <assert.h>shmfifo_t *shmfifo_init(int key, int blksize, int blocks)
{shmfifo_t *fifo = (shmfifo_t *)malloc(sizeof(shmfifo_t));assert(fifo != NULL);memset(fifo, 0, sizeof(shmfifo_t));int shmid;shmid = shmget(key, 0, 0);int size = sizeof(shmhead_t) + blksize * blocks;if (shmid == -1){fifo->shmid = shmget(key, size, IPC_CREAT | 0666);if (fifo->shmid == -1)ERR_EXIT("shmget");fifo->p_shm = (shmhead_t *)shmat(fifo->shmid, NULL, 0);if (fifo->p_shm == (shmhead_t *) - 1)ERR_EXIT("shmat");fifo->p_payload = (char *)(fifo->p_shm + 1);fifo->p_shm->blksize = blksize;fifo->p_shm->blocks = blocks;fifo->p_shm->rd_index = 0;fifo->p_shm->wr_index = 0;fifo->sem_mutex = sem_create(key);fifo->sem_full = sem_create(key + 1);fifo->sem_empty = sem_create(key + 2);sem_setval(fifo->sem_mutex, 1);sem_setval(fifo->sem_full, blocks);sem_setval(fifo->sem_empty, 0);}else{fifo->shmid = shmid;fifo->p_shm = (shmhead_t *)shmat(fifo->shmid, NULL, 0);if (fifo->p_shm == (shmhead_t *) - 1)ERR_EXIT("shmat");fifo->p_payload = (char *)(fifo->p_shm + 1);fifo->sem_mutex = sem_open(key);fifo->sem_full = sem_open(key + 1);fifo->sem_empty = sem_open(key + 2);}return fifo;
}void shmfifo_put(shmfifo_t *fifo, const void *buf)
{sem_p(fifo->sem_full);sem_p(fifo->sem_mutex);memcpy(fifo->p_payload + fifo->p_shm->blksize * fifo->p_shm->wr_index,buf, fifo->p_shm->blksize);fifo->p_shm->wr_index = (fifo->p_shm->wr_index + 1) % fifo->p_shm->blocks;sem_v(fifo->sem_mutex);sem_v(fifo->sem_empty);
}void shmfifo_get(shmfifo_t *fifo, void *buf)
{sem_p(fifo->sem_empty);sem_p(fifo->sem_mutex);memcpy(buf, fifo->p_payload + fifo->p_shm->blksize * fifo->p_shm->rd_index,fifo->p_shm->blksize);fifo->p_shm->rd_index = (fifo->p_shm->rd_index + 1) % fifo->p_shm->blocks;sem_v(fifo->sem_mutex);sem_v(fifo->sem_full);
}void shmfifo_destroy(shmfifo_t *fifo)
{sem_d(fifo->sem_mutex);sem_d(fifo->sem_full);sem_d(fifo->sem_empty);shmdt(fifo->p_shm);shmctl(fifo->shmid, IPC_RMID, 0);free(fifo);
}

1、shmfifo_init:先分配shmfifo 结构体的内存,如果尝试打开共享内存失败则创建,创建的共享内存段大小 = shmhead大小 + 块大小×块数目,然后shmat将此共享内存段映射到进程地址空间,然后使用sem_create 创建3个信号量集,每个信号集只有一个信号量,即上面提到的3个信号量,设置每个信号量的资源初始值。如果共享内存已经存在,则直接shmat映射下即可,此时3个信号量集也已经存在,sem_open 打开即可。sem_xxx 系列封装函数参考这里。
2、shmfifo_put:参照第一个生产者消费者的图,除去sem_p,sem_v 操作之外,中间就将buf 的内容memcpy 到对应缓冲区块,然后移动wr_index。
3、shmfifo_get:与shmfifo_put 类似,执行的是相反的操作。
4、shmfifo_destroy:删除3个信号量集,将共享内存段从进程地址空间剥离,删除共享内存段,释放shmfifo 结构体的内存。

下面是生产者程序和消费者程序:
shmfifo_send.c

#include "shmfifo.h"typedef struct stu
{char name[32];int age;
} STU;
int main(void)
{shmfifo_t *fifo = shmfifo_init(1234, sizeof(STU), 3);STU s;memset(&s, 0, sizeof(STU));s.name[0] = 'A';int i;for (i = 0; i < 5; i++){s.age = 20 + i;shmfifo_put(fifo, &s);s.name[0] = s.name[0] + 1;printf("send ok\n");}free(fifo);return 0;
}

shmfifo_recv.c

#include "shmfifo.h"typedef struct stu
{char name[32];int age;
} STU;int main(void)
{shmfifo_t *fifo = shmfifo_init(1234, sizeof(STU), 3);STU s;memset(&s, 0, sizeof(STU));int i;for (i = 0; i < 5; i++){shmfifo_get(fifo, &s);printf("name = %s age = %d\n", s.name, s.age);}shmfifo_destroy(fifo);return 0;
}

先运行生产者进程,输出如下:
simba@ubuntu:~/Documents/code/linux_programming/UNP/system_v/shmfifo$ ./shmfifo_send
send ok
send ok
send ok

因为共享内存只有3块block,故发送了3次后再次P(semfull)就阻塞了,等待消费者读取数据,现在运行消费者进程
simba@ubuntu:~/Documents/code/linux_programming/UNP/system_v/shmfifo$ ./shmfifo_recv
name = A age = 20
name = B age = 21
name = C age = 22
name = D age = 23
name = E age = 24
因为生产者已经创建了一块共享内存,故消费者只是打开而已,当读取了第一块数据之后,生产者会再次写入,依次输出后两个 send ok,可以推论的是D是重新写到共享内存开始的第一块,E是第二块,类似环形队列。
从输出可以看出,的确实现了数据的先进先出。

PS:在生产实践中也可以看到利用共享内存实现环形缓冲区 or 哈希表 的例子。

参考:《UNP》
转载自http://blog.csdn.net/jnu_simba/article/details/9103059

这篇关于linux网络编程之System V 信号量(三):基于生产者-消费者模型实现先进先出的共享内存段的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/300486

相关文章

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

java实现docker镜像上传到harbor仓库的方式

《java实现docker镜像上传到harbor仓库的方式》:本文主要介绍java实现docker镜像上传到harbor仓库的方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 前 言2. 编写工具类2.1 引入依赖包2.2 使用当前服务器的docker环境推送镜像2.2

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的

Java easyExcel实现导入多sheet的Excel

《JavaeasyExcel实现导入多sheet的Excel》这篇文章主要为大家详细介绍了如何使用JavaeasyExcel实现导入多sheet的Excel,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录1.官网2.Excel样式3.代码1.官网easyExcel官网2.Excel样式3.代码

Linux中SSH服务配置的全面指南

《Linux中SSH服务配置的全面指南》作为网络安全工程师,SSH(SecureShell)服务的安全配置是我们日常工作中不可忽视的重要环节,本文将从基础配置到高级安全加固,全面解析SSH服务的各项参... 目录概述基础配置详解端口与监听设置主机密钥配置认证机制强化禁用密码认证禁止root直接登录实现双因素

Go语言数据库编程GORM 的基本使用详解

《Go语言数据库编程GORM的基本使用详解》GORM是Go语言流行的ORM框架,封装database/sql,支持自动迁移、关联、事务等,提供CRUD、条件查询、钩子函数、日志等功能,简化数据库操作... 目录一、安装与初始化1. 安装 GORM 及数据库驱动2. 建立数据库连接二、定义模型结构体三、自动迁

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

浏览器插件cursor实现自动注册、续杯的详细过程

《浏览器插件cursor实现自动注册、续杯的详细过程》Cursor简易注册助手脚本通过自动化邮箱填写和验证码获取流程,大大简化了Cursor的注册过程,它不仅提高了注册效率,还通过友好的用户界面和详细... 目录前言功能概述使用方法安装脚本使用流程邮箱输入页面验证码页面实战演示技术实现核心功能实现1. 随机

Golang如何对cron进行二次封装实现指定时间执行定时任务

《Golang如何对cron进行二次封装实现指定时间执行定时任务》:本文主要介绍Golang如何对cron进行二次封装实现指定时间执行定时任务问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录背景cron库下载代码示例【1】结构体定义【2】定时任务开启【3】使用示例【4】控制台输出总结背景