RNN实现影评情感分析

2023-10-29 08:50
文章标签 分析 实现 rnn 情感 影评

本文主要是介绍RNN实现影评情感分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里我们将使用RNN(循环神经网络)对电影评论进行情感分析,结果为positive或negative,分别代表积极和消极的评论。至于为什么使用RNN而不是普通的前馈神经网络,是因为RNN能够存储序列单词信息,得到的结果更为准确。这里我们将使用一个带有标签的影评数据集进行训练模型。

使用的RNN模型架构如下: 

在这里,我们将单词传入到嵌入层而不是使用ONE-HOT编码,是因为词嵌入是一种对单词数据更好的表示。

在嵌入层之后,新的表示将会进入LSTM细胞层。最后使用一个全连接层作为输出层。我们使用sigmiod作为激活函数,因为我们的结果只有positive和negative两个表示情感的结果。输出层将是一个使用sigmoid作为激活函数的单一的单元。

数据加载

import numpy as np
import tensorflow as tf
with open('../sentiment-network/reviews.txt', 'r') as f:reviews = f.read()
with open('../sentiment-network/labels.txt', 'r') as f:labels = f.read()

查看前2000个单词

reviews[:2000]

输出:

加载完数据后就需要对数据进行预处理:

数据预处理

构建神经网络的第一步是将数据处理成合适的格式,由于我们需要将数据输入到嵌入层,因此需要将每一个单词 编码为整数形式。

在数据集中,每条评论是用换行符分隔的。为了解决这些问题,我将把文本分成每一个评论,使用\n作为分隔符。然后我可以把所有的评论组合成一个大的字符串。

首先,我们将移除数据中所有的标点符号,然后去掉所有的换行符,得到所有单独的单词组成的列表:

from string import punctuation
all_text = ''.join([c for c in reviews if c not in punctuation])
reviews = all_text.split('\n')all_text = ''.join(reviews)
words = all_text.split()

查看处理结果:

all_text[:2000]

输出:

对单词进行编码

嵌入层需要传入整数类型的数据,因此我们需要将单词编码为整数类型。最简单的方法是创建一个从单词到整数的映射的字典。然后我们能将每条评论转换为整数传入网络。

from collections import Counter
counts = Counter(words)
vocab = sorted(counts, key=counts.get, reverse=True)
vocab_to_int = {word : ii for ii, word in enumerate(vocab, 1)}
reviews_ints = []for review in reviews:reviews_ints.append([vocab_to_int[word] for word in review.split()])
print(len(reviews_ints))
print(reviews_ints[1])
print(len(reviews_ints))
print(reviews_ints[1])

查看输出:

这篇关于RNN实现影评情感分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/299557

相关文章

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499