【特纳斯电子】超声波的测距原理分析(51单片机+HC-SR04 超声波测距)

2023-10-29 00:40

本文主要是介绍【特纳斯电子】超声波的测距原理分析(51单片机+HC-SR04 超声波测距),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 超声波的简单分析

超声波传感器是一种常用的传感器,它利用超声波的特性来测量距离或探测物体的存在。超声波传感器发射超声波脉冲,并通过测量超声波的反射时间来计算距离。当超声波遇到物体时,会发生回波,并被传感器接收到。通过测量回波的时间延迟,可以确定物体与传感器之间的距离。

超声波传感器常用于测距应用,例如机器人导航、停车辅助系统、无人机避障等。它具有非接触式、高精度和快速响应的特点。超声波传感器的工作原理类似于蝙蝠利用声波来探测周围环境。

超声波传感器通常由发射器和接收器组成。发射器发出超声波信号,接收器接收回波信号。超声波传感器可以测量的范围取决于超声波的频率和传感器的设计。一般而言,超声波传感器可以测量几厘米到几米的距离范围。下面对我们使用的HC-SR04详细讲解。

HC-SR04是一种常用的超声波测距模块。它由超声波发射器和接收器组成,可以测量物体与模块之间的距离。以下是HC-SR04模块的详细介绍:

  1. 工作原理:HC-SR04通过发射超声波脉冲并计时接收到的回波时间来确定距离。它利用超声波在空气中的传播速度(约为343米/秒)来计算物体与传感器之间的距离。
  2. 组成部分:
    • 发射器(Transmitter):发射超声波脉冲。
    • 接收器(Receiver):接收从物体反射回来的超声波信号。
    • 控制电路:控制发射和接收的时序。
  3. 使用方法:
    • 发射器发射超声波脉冲,脉冲经过空气传播到目标物体上。
    • 如果有物体存在,超声波脉冲将被物体表面反射,并由接收器接收。
    • 接收器将接收到的回波转换成电信号,并传递给控制电路进行处理。
    • 控制电路计算回波时间,然后根据回波时间和超声波传播速度计算出物体与模块之间的距离。
  4. 技术参数:
    • 工作电压:一般为5V直流电源。
    • 工作频率:一般为40kHz。
    • 测量范围:2厘米到400厘米。
    • 测量精度:约为3毫米。
  5. 应用领域:HC-SR04模块在许多物联网和机器人项目中被广泛使用,包括但不限于以下应用:
    • 避障:通过测量与障碍物的距离,实现避障功能。
    • 测距:用于测量物体与传感器之间的距离。
    • 位置检测:通过距离的变化来确定物体的位置。
    • 自动驾驶:在自动驾驶车辆中用于障碍物检测和定位等。

2 超声波测距的驱动

2.1 模块介绍

超声波测距模块是根据超声波遇障碍反射的原理进行测距的,能够发送超声波、接收超声波并通过处理,输出一段和发送与接收间隔时间相同的高电平信号,是常用的测距模块之一。HC-SR04是最常用的超声波测距模块之一,HC-SR04超声波模块可提供2cm~400cm的非接触式距离感测功能,测距精度可达3mm,工作电压为5V;内部模块包括超声波发射器、接收器与控制电路。如下为实物与对应端口:

  • Vcc:+5V电源供电;
  • Trig:输入触发信号(可以触发测距);
  • Echo:传出信号回响(可以传回时间差);
  • GND:接地。

2.2 基本工作原理

(1)采用I/O口连接Trig触发测距,给最少10us的高电平后即可发送超声波;

(2)模块自动发送8个40kHz的方波,并自动检测是否有信号返回;

(3)若有信号返回,经内部电路处理后,通过Echo到I/O口输入一个高电平,高电平持续的时间就是超声波从发射到返回的时间

(4)测试距离=(高电平时间*音速)/2;音速=340m/s=0.034cm/us

2.3 时序图

以上时序图表明你只需要向模块提供一个10us以上的脉冲触发信号,然后该模块内部将发出8个40kHz周期电平并检测回波,一旦检测到有回波信号,模块就向I/O口输出回响信号。回响信号的脉冲宽度与所测的距离成正比,由此通过回响信号的高电平时间计算得到距离。建议先将单位转换为cm/us,便于数据显示;测量周期为60ms以上,以防止发射信号对回响信号的影响。

  • 此模块不宜带电连接,若要带电连接,则先让模块的GND端先连接,否则会影响模块的正常工作;
  • 测距时,被测物体的面积不少于0.5平方米且平面尽量要求平整,否则会影响测量的结果。

3 获取测距数据

​ 先将端口初始化(置0),再通过Trig输入一个12us的高电平作为触发信号,最后接收回响信号,回响信号高电平的时间通过定时器0测量——当Echo为1时开始计时,Echo为0时结束计时,不需要打开中断。得到时间后根据公式: 测试距离=(高电平时间*音速)/2;音速=340m/s=0.034cm/us,计算出实际距离。

首先初始化定时器0

/*********************************************************
函数功能:T0定时器初始化
传入值:无
返回值:无
*********************************************************/
void Time0_Init(void)
{TMOD|=0x01;	//设T0为方式1,GATE=1;TH0=0;TL0=0;          ET0=1;           //允许T0中断EA=1;		//开启总中断		
}

然后撰写超声波获取的距离程序,如下所示。

/*********************************************************
函数功能:计算测到的距离
传入值:当前的环境温度
返回值:测得的距离(距离单位cm)
*********************************************************/
uint Hcsr04_GetDistance(uint Hcsr04_temp)
{uint distance;			// 用于记录测得的距离float gSpeed;			// 保存超声波的速度值// 根据公式 v=0.607T+331.4 计算出当前温度值对应的超声波速度,这时的单位是“米/秒” gSpeed = 0.607*Hcsr04_temp+331.4;	// 将超声波的速度从单位“m/s”转为“cm/us”,方便后面的计算	gSpeed = gSpeed/10000;		TH0 = 0;	 TL0 = 0;HCSR04_Trig = 1;		// 给超声波模块一个开始脉冲Hcsr04_DelayMs(1);HCSR04_Trig = 0;TR0 = 1;while(!HCSR04_Echo)	// 等待超声波模块的返回脉冲{if(TH0*256+TL0 >= 50000)	//防止超声波卡死break;}TH0 = TL0 = 0;			//计时清零TR0 = 1;			// 启动定时器,开始计时while(HCSR04_Echo)		// 等待超声波模块的返回脉冲结束{if(TH0*256+TL0 >= 50000)	//防止超声波卡死break;}TR0 = 0;		// 停止定时器,停止计时distance=((TH0*256+TL0)*gSpeed)/2;	// 距离cm=(时间us * 速度cm/us)/2if(distance > 500)		// 把检测结果限制500厘米内distance = 500;return distance;
}

 

这篇关于【特纳斯电子】超声波的测距原理分析(51单片机+HC-SR04 超声波测距)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/297078

相关文章

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方

SpringBoot中六种批量更新Mysql的方式效率对比分析

《SpringBoot中六种批量更新Mysql的方式效率对比分析》文章比较了MySQL大数据量批量更新的多种方法,指出REPLACEINTO和ONDUPLICATEKEY效率最高但存在数据风险,MyB... 目录效率比较测试结构数据库初始化测试数据批量修改方案第一种 for第二种 case when第三种

解决1093 - You can‘t specify target table报错问题及原因分析

《解决1093-Youcan‘tspecifytargettable报错问题及原因分析》MySQL1093错误因UPDATE/DELETE语句的FROM子句直接引用目标表或嵌套子查询导致,... 目录报js错原因分析具体原因解决办法方法一:使用临时表方法二:使用JOIN方法三:使用EXISTS示例总结报错原

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串