FGSM(Fast Gradient Sign Method)算法源码解析

2023-10-29 00:36

本文主要是介绍FGSM(Fast Gradient Sign Method)算法源码解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

论文链接:https://arxiv.org/abs/1412.6572
源码出处:https://github.com/Harry24k/adversarial-attacks-pytorch/tree/master


源码

import torch
import torch.nn as nnfrom ..attack import Attackclass FGSM(Attack):r"""FGSM in the paper 'Explaining and harnessing adversarial examples'[https://arxiv.org/abs/1412.6572]Distance Measure : LinfArguments:model (nn.Module): model to attack.eps (float): maximum perturbation. (Default: 8/255)Shape:- images: :math:`(N, C, H, W)` where `N = number of batches`, `C = number of channels`,        `H = height` and `W = width`. It must have a range [0, 1].- labels: :math:`(N)` where each value :math:`y_i` is :math:`0 \leq y_i \leq` `number of labels`.- output: :math:`(N, C, H, W)`.Examples::>>> attack = torchattacks.FGSM(model, eps=8/255)>>> adv_images = attack(images, labels)"""def __init__(self, model, eps=8/255):super().__init__("FGSM", model)self.eps = epsself.supported_mode = ['default', 'targeted']def forward(self, images, labels):r"""Overridden."""self._check_inputs(images)images = images.clone().detach().to(self.device)labels = labels.clone().detach().to(self.device)if self.targeted:target_labels = self.get_target_label(images, labels)loss = nn.CrossEntropyLoss()images.requires_grad = Trueoutputs = self.get_logits(images)# Calculate lossif self.targeted:cost = -loss(outputs, target_labels)else:cost = loss(outputs, labels)# Update adversarial imagesgrad = torch.autograd.grad(cost, images,retain_graph=False, create_graph=False)[0]adv_images = images + self.eps*grad.sign()adv_images = torch.clamp(adv_images, min=0, max=1).detach()return adv_images

解析

FGSM的全称是Fast Gradient Sign Method(快速梯度下降法),在白盒环境下,通过求出损失cost对输入的导数,然后用符号函数sign()得到其具体的梯度方向,接着乘以一个步长eps,得到的“扰动”加在原来的输入 上就得到了在FGSM攻击下的样本。
可以仔细回忆一下,在神经网络的反向传播当中,我们在训练过程时就是沿着梯度下降的方向来更新更新 w , b w,b w,b的值。这样做可以使得网络往损失cost减小的方向收敛。简单来说,梯度方向代表了损失cost增大速度最快的方向,FGSM算法假设目标损失函数 J ( x , y ) J(x,y) J(x,y) x x x之间是近似线性的,即 J ( x , y ) ≈ w T x J(x ,y)≈w^Tx J(x,y)wTx,所以沿着梯度方向改变输入 x x x可以增大损失,从而达到使模型分类错误的目的。具体做法是在图像上加一个扰动 η \eta η η = ϵ s i g n ( ▽ x J ( θ , x , y ) ) \eta= \epsilon sign(\bigtriangledown_{x}J(\theta,x,y)) η=ϵsign(xJ(θ,x,y)),其中 ▽ x \bigtriangledown_{x} x即梯度, ϵ \epsilon ϵ即步长,也就是每个像素扰动的最大值。

forward()函数就是攻击过程,输入图像images和标签y,即可返回对抗图像adv_images
images = images.clone().detach().to(self.device)clone()将图像克隆到一块新的内存区(pytorch默认同样的tensor共享一块内存区);detach()是将克隆的新的tensor从当前计算图中分离下来,作为叶节点,从而可以计算其梯度;to()作用就是将其载入设备。
target_labels = self.get_target_label(images, labels):是有目标攻击的情况,由于该论文并没有探讨有目标攻击,这里就先不做解释。
loss = nn.CrossEntropyLoss():设置损失函数为交叉熵损失。
images.requires_grad = True:将这个参数设置为True,pytorch就会在程序运行过程中自动生成计算图,供计算梯度使用。
outputs = self.get_logits(images):获得图像的在模型中的输出值。
cost = loss(outputs, labels):计算损失
grad = torch.autograd.grad(cost, images, retain_graph=False, create_graph=False)[0]costimages求导,得到梯度grad
adv_images = images + self.eps*grad.sign():根据公式在原图像上增加一个扰动,得到对抗图像。
adv_images = torch.clamp(adv_images, min=0, max=1).detach():将images中大于1的部分设为1,小于0的部分设为0,防止越界。

思考

FGSM算法假设目标损失函数 J ( x , y ) J(x,y) J(x,y) x x x之间是近似线性的,但是这个线性假设不一定正确,如果J JJ和x xx不是线性的,那么在 ( 0 , ϵ s i g n ( ▽ x J ( θ , x , y ) ) ) (0,\epsilon sign(\bigtriangledown_{x}J(\theta,x,y))) (0,ϵsign(xJ(θ,x,y)))之间是否存在某个扰动,使得 J J J增加的也很大,此时 x x x的修改量就可以小于 ϵ \epsilon ϵ。于是,有学者就提出迭代的方式来找各个像素点的扰动,也就是BIM算法。

这篇关于FGSM(Fast Gradient Sign Method)算法源码解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/297045

相关文章

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

一文解析C#中的StringSplitOptions枚举

《一文解析C#中的StringSplitOptions枚举》StringSplitOptions是C#中的一个枚举类型,用于控制string.Split()方法分割字符串时的行为,核心作用是处理分割后... 目录C#的StringSplitOptions枚举1.StringSplitOptions枚举的常用

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

MyBatis延迟加载与多级缓存全解析

《MyBatis延迟加载与多级缓存全解析》文章介绍MyBatis的延迟加载与多级缓存机制,延迟加载按需加载关联数据提升性能,一级缓存会话级默认开启,二级缓存工厂级支持跨会话共享,增删改操作会清空对应缓... 目录MyBATis延迟加载策略一对多示例一对多示例MyBatis框架的缓存一级缓存二级缓存MyBat

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

前端缓存策略的自解方案全解析

《前端缓存策略的自解方案全解析》缓存从来都是前端的一个痛点,很多前端搞不清楚缓存到底是何物,:本文主要介绍前端缓存的自解方案,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、为什么“清缓存”成了技术圈的梗二、先给缓存“把个脉”:浏览器到底缓存了谁?三、设计思路:把“发版”做成“自愈”四、代码

Java集合之Iterator迭代器实现代码解析

《Java集合之Iterator迭代器实现代码解析》迭代器Iterator是Java集合框架中的一个核心接口,位于java.util包下,它定义了一种标准的元素访问机制,为各种集合类型提供了一种统一的... 目录一、什么是Iterator二、Iterator的核心方法三、基本使用示例四、Iterator的工

Java JDK Validation 注解解析与使用方法验证

《JavaJDKValidation注解解析与使用方法验证》JakartaValidation提供了一种声明式、标准化的方式来验证Java对象,与框架无关,可以方便地集成到各种Java应用中,... 目录核心概念1. 主要注解基本约束注解其他常用注解2. 核心接口使用方法1. 基本使用添加依赖 (Maven