omni rpc python生成地址_用 Python 讲解偏度和峰度

2023-10-28 22:20

本文主要是介绍omni rpc python生成地址_用 Python 讲解偏度和峰度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

之前笔者在做一个金融数据项目时,有朋友问我,衡量股票收益率有没有什么好的方法。这个问题让笔者也思索了好久,其实股票的收益率如果我们从本质来看不就是数据吗,无非就是收益率我们就想让其越高越好,也就是让这个数据增加得越多越好。而衡量数据我们经常用到的方法有均值、方差、偏度和峰度。均值和方差是我们见到和用到最多的方法,甚至在中学课本里都有提及,那么笔者今天就讲一下偏度和峰度这两个大家不太常用的方法,并结合python代码讲一下偏度和峰度在数据分析中的简单应用。
首先还是介绍一下偏度和峰度的概念。

b884b77b730df082d19808269388ba94.png


图1. 偏度和峰度公式
偏度(skewness)又称偏态、偏态系数,是描述数据分布偏斜方向和程度的度量,其是衡量数据分布非对称程度的数字特征。对于随机变量X,其偏度是样本的三阶标准化矩,计算公式如图1中的式(1)所示。
偏度的衡量是相对于正态分布来说,正态分布的偏度为0。因此我们说,若数据分布是对称的,偏度为0;若偏度>0,则可认为分布为右偏,也叫正偏,即分布有一条长尾在右;若偏度<0,则可认为分布为左偏,也叫负偏,即分布有一条长尾在左。正偏和负偏如图2所示,在图2中,左边的就是正偏,右边的是负偏。

755de90b5110c578980855a948617d03.png


图2. 偏度的示意图
而峰度(Kurtosis)则是描述数据分布陡峭或平滑的统计量,通过对峰度的计算,我们能够判定数据分布相对于正态分布而言是更陡峭还是平缓。对于随机变量X,其峰度为样本的四阶标准中心矩,计算公式如图1中的式2所示。
当峰度系数>0,从形态上看,它相比于正态分布要更陡峭或尾部更厚;而峰度系数<0,从形态上看,则它相比于正态分布更平缓或尾部更薄。在实际环境当中,如果一个分部是厚尾的,这个分布往往比正态分布的尾部具有更大的“质量”,即含又更多的极端值。我们常用的几个分布中,正态分布的峰度为0,均匀分布的峰度为-1.2,指数分布的峰度为6。
峰度的示意图如图3所示,其中第一个子图就是峰度为0的情况,第二个子图是峰度大于0的情况,第三个则是峰度小于0。

9e21de78722f6bb759117b97e78d0cb0.png


图3. 峰度的示意图
在说完基本概念之后,我们就再讲一下怎么基于偏度和峰度进行正态性检验。这里主要有两种方法,一是Omnibus检验,二是Jarque - Bera检验。

1a461b6d4f773cb448f1a382545e38be.png


图4. Omnibus和JB检验的公式
Omnibus检验的公式如图4中公式(3)所示,式中Z1和Z2是两个正态化函数,g1和g2则分别是偏度和峰度,在Z1和Z2的作用下,K的结果就接近于卡方分布,我们就能用卡方分布来检验了。这个公式的原理比较复杂,大家如想了解可自行查找相关资料。
Jarque - Bera检验的公式如图4中公式(4)所示,式中n是样本量,这个结果也是接近于卡方分布,其原理也不在这里赘述。这两个检验都是基于所用数据是正态分布的,即有如下假设。
原假设H0:数据是正态分布的。
备择假设H1:数据不是正态分布。
下面我们用代码来说明一下偏度和峰度。
首先看一下数据,这个数据很简单,只有15行2列。数据描述的是火灾事故的损失以及火灾发生地与最近消防站的距离,前者单位是千元,后者单位是千米,数据如图5所示。其中distance指火灾发生地与最近消防站的距离,loss指火灾事故的损失。

469be6a33f5cdef87c3559fe14f3b62a.png


图5. 数据示例
下面是代码,首先导入需要的库。import pandas as pdimport matplotlib.pyplot as pltimport statsmodels.stats.api as smsimport statsmodels.formula.api as smffrom statsmodels.compat import lzipfrom statsmodels.graphics.tsaplots import plot_acf
接下来是读取数据并作图,这些代码都非常简单,笔者不做过多的解释。
file = r'C:Usersdata.xlsx'
df = pd.read_excel(file)
fig, ax = plt.subplots(figsize=(8,6))
plt.ylabel('Loss')
plt.xlabel('Distance')
plt.plot(df['distance'], df['loss'], 'bo-', label='loss')
plt.legend()
plt.show()
结果如图6所示,从结果中我们可以看到这些点大致在一条直线上,那么我们就用一元线性回归来拟合这些数据。


图6. 数据连线图
下面是生成模型,并输出模型的结果。
expr = 'loss ~ distance'
results = smf.ols(expr, df).fit() #生成回归模型
print(results.summary())
结果如图7所示。从图中我们可以看到,Prob (F-statistic)的值为1.25e-08,这个值非常小,说明我们的一元线性回归模型是正确的,也就是loss和distance的线性关系是显著的。而图中还可以看到Skew=-0.003,说明这部分数据非常接近正态分布,而Kurtosis=1.706,说明我们的数据比正态分布更陡峭,是一个尖峰。此外,从图中还可以看到Omnibus=2.551,Prob(Omnibus)=0.279Jarque-Bera (JB)=1.047Prob(JB)=0.592,这里我们很难直接从Omnibus和Jarque-Bera的数值来判断是否支持前面的备择假设,但我们可以从Prob(Omnibus)和Prob(JB)这两个数值来判断,因为这两个数值都比较大,那么我们就无法拒绝前面的原假设,即H0是正确的,说明我们的数据是服从正态分布的。

965f90f5dbbb65989b1ec828cc799742.png


图7. 模型结果说明
接下来我们再验证一下Skew、Kurtosis、Omnibus和Jarque-Bera (JB)这些数值,用的是statsmodels自带的方法。代码如下。
omnibus_label = ['Omnibus K-squared test', 'Chi-squared(2) p-value']
omnibus_test = sms.omni_normtest(results.resid) #omnibus检验
omnibus_results = lzip(omnibus_label, omnibus_test)
jb_label = ['Jarque-Bera test', 'Chi-squared(2) p-value', 'Skewness', 'Kurtosis']
jb_test = sms.jarque_bera(results.resid) #jarque_bera检验
jb_results = lzip(jb_label, jb_test)
print(omnibus_results)
print(jb_results)
这里omnibus_labeljb_label是两个list,里面包含了我们所要检验的项目名称,sms.omni_normtest就是statsmodels自带的omnibus检验方法,sms.jarque_bera就是statsmodels自带的jarque_bera检验方法。results.resid是残差值,一共有15个值,我们的数据本身就只有15个点,这里的每个残差值就对应前面的每个数据点,sms.omni_normtestsms.jarque_bera就是通过残差值来进行检验的。而lzip这个方法很少见,其用法和python中原生函数zip差不多,笔者在这里更多地是想让大家了解statsmodels,所以用了lzip,这里直接用zip也是可以的,至于lzip和zip的区别,留给大家自行去学习。而上面得到的结果如图8所示。从图8中可以看到,我们得到的结果和前面图7中的结果一模一样。这里用sms.omni_normtestsms.jarque_bera来进行验证,主要是对前面图7中的结果的一个解释,帮助大家更好地学习statsmodels。

5ece38abea2835fbbeb3e185353c0222.png


图8. omnibus和jb检验的结果
本文主要通过statsmodels来解释一下偏度和峰度在数据分析中的一些基本应用,想要更深入了解偏度、峰度以及statsmodels的读者,可以自行查阅相关资料。

这篇关于omni rpc python生成地址_用 Python 讲解偏度和峰度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/296333

相关文章

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v