【评价指标】混淆矩阵Confusion Matrix、iou、miou、召回率、准确率及代码实现

本文主要是介绍【评价指标】混淆矩阵Confusion Matrix、iou、miou、召回率、准确率及代码实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

混淆矩阵

以二分类为例

 多分类示例

1.混淆矩阵

2.iou(交并比)

miou

3.召回率

 4.acc(准确率)

5.混淆矩阵可视化 

完整代码


混淆矩阵

混淆矩阵是大小为 (n_classes, n_classes) 的方阵,  n_classes 表示类的数量。混淆矩阵可以用于直观展示每个类别的预测情况。并能从中计算精确值(Accuracy)、精确率(Precision)、召回率(Recall)、交并比(IoU)。

以二分类为例

预测为真预测为假
实际为真TPFN
实际为假FPTN

TP(True Positive):将正类预测为正类数;FN(False Negative):将正类预测为负类数;FP(False Positive):将负类预测为正类数;TN(True Negative):将负类预测为负类数

  • Accuracy(准确率)是最常用的指标,所有预测正确的占全部的比例

Accuracy = \frac{TP+TN }{TP+TN+FP+FN}

  • Precision(精度,查准率)看的是在预测为真的情形下有多少是预测正确的,即「精准度」是多少

precision = \frac{TP }{TP+FP}

  • Recall(召回率,查全率)是看在实际为真的情形中,预测「能召回多少」实际为真的答案

Recall = \frac{TP }{TP+FN} 

 多分类示例

1.混淆矩阵

不想太麻烦,就随机生成了两组4\times4的数据作为真实值b和预测值a,生成混淆矩阵。

#生成数据
import numpy as np
a = np.random.randint(0, 6, size=(4,4))#预测值
b = np.random.randint(0, 6, size=(4,4))#真实值
n = 6
print(a)
print(b)#生成混淆矩阵
def fast_hist(a, b, n):k = (b >= 0) & (b < n)# 横坐标是预测的类别,纵坐标是真实的类别#n_class * label_true[mask].astype(int) + label_pred[mask]计算得到的是二维数组元素变成一维度数组元素的时候的地址取值(每个元素大小为1),返回的是一个numpy的list,然后#np.bincount就可以计算各中取值的个数hist = np.bincount(a[k].astype(int) + n*b[k].astype(int), minlength=n**2).reshape(n,n)return hist
print(fast_hist(a, b, n))

#随机生成的数据

 [[4 2 2 0]
 [5 1 1 3]
 [4 0 2 1]
 [1 1 4 1]]


[[3 4 5 0]
 [2 4 5 1]
 [4 0 1 0]
 [1 4 2 4]]

#混淆矩阵: 横坐标是预测的类别,纵坐标是真实的类别

[[2 1 0 0 0 0]
 [0 1 1 1 0 0]
 [0 0 0 0 1 1]
 [0 0 0 0 1 0]
 [0 3 1 0 1 0]
 [0 1 1 0 0 0]]

2.iou(交并比)

def per_class_iou(hist):"""hist传入混淆矩阵(n, n)"""# 因为下面有除法,防止分母为0的情况报错np.seterr(divide="ignore", invalid="ignore")# 交集:np.diag取hist的对角线元素# 并集:hist.sum(1)和hist.sum(0)分别按两个维度相加,而对角线元素加了两次,因此减一次iou = np.diag(hist) / (hist.sum(1) + hist.sum(0) - np.diag(hist))# 把报错设回来np.seterr(divide="warn", invalid="warn")# 如果分母为0,结果是nan,会影响后续处理,因此把nan都置为0iou[np.isnan(iou)] = 0.return iou
print(per_class_iou(hist))

#iou

 [0.66666667 0.125      0.         0.         0.14285714 0.        ]

miou

对iou求平均就是miou

miou = np.nanmean(iou)

3.召回率

对角线上的数值(预测正确的真)比上hist每一行的和(每一类实际为真的数量)

#每一类的准确率
def per_class_acc(hist):""":param hist: 混淆矩阵:return: 每类的acc和平均的acc"""np.seterr(divide="ignore", invalid="ignore")acc_cls = np.diag(hist) / hist.sum(1)   #改变hist.sum()的维度就是精度np.seterr(divide="warn", invalid="warn")acc_cls[np.isnan(acc_cls)] = 0.return acc_cls
print(per_class_acc(hist))

#每类的召回率

[0.66666667 0.33333333 0.         0.         0.2        0.        ]

 再求平均就是召回率了

 4.acc(准确率)

预测正确的比上所有

acc = np.diag(hist).sum() / hist.sum()

 0.25

5.混淆矩阵可视化 

# 绘制hist矩阵的可视化图并保存
def drawHist(hist, path):hist_ = histhist_tmp = np.zeros((class_num, class_num))for i in range(len(hist_)):hist_tmp[i] = hist_[i]print(hist_tmp)hist = hist_tmpplt.matshow(hist)plt.xlabel("Predicted label")plt.ylabel("True label")plt.axis("off")# plt.colorbar()plt.show()if (path != None):plt.savefig(path)print("%s保存成功✿✿ヽ(°▽°)ノ✿" % path)

完整代码

import torch
import numpy as np
import matplotlib.pyplot as plt# 计算各种评价指标
def fast_hist(a, b, n):"""生成混淆矩阵a 是形状为(HxW,)的预测值b 是形状为(HxW,)的真实值n 是类别数"""# 确保a和b在0~n-1的范围内,k是(HxW,)的True和False数列k = (a >= 0) & (a < n)# 横坐标是预测的类别,纵坐标是真实的类别hist = np.bincount(a[k].astype(int) + n * b[k].astype(int), minlength=n ** 2).reshape(n, n)return histdef per_class_iou(hist):# 因为下面有除法,防止分母为0的情况报错np.seterr(divide="ignore", invalid="ignore")# 交集:np.diag取hist的对角线元素# 并集:hist.sum(1)和hist.sum(0)分别按两个维度相加,而对角线元素加了两次,因此减一次iou = np.diag(hist) / (hist.sum(1) + hist.sum(0) - np.diag(hist))# 把报错设回来np.seterr(divide="warn", invalid="warn")# 如果分母为0,结果是nan,会影响后续处理,因此把nan都置为0iou[np.isnan(iou)] = 0.return ioudef per_class_acc(hist):""":param hist: 混淆矩阵:return: 每类的acc和平均的acc"""np.seterr(divide="ignore", invalid="ignore")acc_cls = np.diag(hist) / hist.sum(1)np.seterr(divide="warn", invalid="warn")acc_cls[np.isnan(acc_cls)] = 0.return acc_cls# 使用这个函数计算模型的各种性能指标
# 输入网络的输出值和标签值,得到计算结果
def get_MIoU(pred, label, hist):""":param pred: 预测向量:param label: 真实标签值:return: 准确率,每类的准确率,每类的iou, miou"""hist = hist# 准确率acc = np.diag(hist).sum() / hist.sum()# 每一类的召回率acc_cls = per_class_acc(hist)# 每类的iouiou = per_class_iou(hist)# mioumiou = np.nanmean(iou[1:])return acc, acc_cls, iou, miou, hist# 绘制hist矩阵的可视化图并保存
def drawHist(hist, path):# print(hist)hist_ = histhist_tmp = np.zeros((n, n))for i in range(len(hist_)):hist_tmp[i] = hist_[i]print(hist_tmp)hist = hist_tmpplt.matshow(hist)plt.xlabel("Predicted label")plt.ylabel("True label")plt.axis("off")# plt.colorbar()plt.show()if (path != None):plt.savefig(path)print("%s保存成功✿✿ヽ(°▽°)ノ✿" % path)if __name__ == "__main__":# 随机生成数据a = np.random.randint(0, 6, size=(4, 4))b = np.random.randint(0, 6, size=(4, 4))n = 6hist = fast_hist(a, b, n)print(a)print(b)print(get_MIoU(a, b, hist))drawHist(hist, "C:/Users/Administrator/Desktop")

#所有结果
[[5 1 5 0]
 [4 0 5 1]
 [2 4 2 1]
 [1 3 2 5]]


[[0 3 3 3]
 [1 2 0 1]
 [0 3 1 1]
 [5 5 3 5]]


(0.1875, array([0.        , 0.5       , 0.        , 0.        , 0.        ,
       0.33333333]), array([0.        , 0.33333333, 0.        , 0.        , 0.        ,
       0.16666667]), 0.1, array([[0, 0, 1, 0, 0, 2],
       [0, 2, 1, 0, 1, 0],
       [1, 0, 0, 0, 0, 0],
       [1, 1, 1, 0, 1, 1],
       [0, 0, 0, 0, 0, 0],
       [0, 1, 0, 1, 0, 1]], dtype=int64))


[[0. 0. 1. 0. 0. 2.]
 [0. 2. 1. 0. 1. 0.]
 [1. 0. 0. 0. 0. 0.]
 [1. 1. 1. 0. 1. 1.]
 [0. 0. 0. 0. 0. 0.]
 [0. 1. 0. 1. 0. 1.]]

代码结构主要是学习了这篇文章里混淆矩阵的部分

混淆矩阵的生成代码原理不懂的可以看这篇

这篇关于【评价指标】混淆矩阵Confusion Matrix、iou、miou、召回率、准确率及代码实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/294542

相关文章

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali