一个 tflearn 情感分析小例子

2023-10-28 14:50
文章标签 分析 例子 情感 tflearn

本文主要是介绍一个 tflearn 情感分析小例子,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

学习资料:
https://www.youtube.com/watch?v=si8zZHkufRY&list=PL2-dafEMk2A7YdKv4XfKpfbTH5z6rEEj3&index=5


情感分析,
就是要识别出用户对一件事一个物或一个人的看法、态度,比如一个电影的评论,一个商品的评价,一次体验的感想等等。根据对带有情感色彩的主观性文本进行分析,识别出用户的态度,是喜欢,讨厌,还是中立。

关于情感分析,之前有一篇 cs224d 的小项目:
里面用 skipgram 学习出 word vector,然后用 softmax regression 进行识别:
怎样做情感分析

今天的方法是用 20 行代码实现这个过程:
用 tflearn.data_utils 的 pad_sequences 将 strings 转化成向量,用 tflearn.embedding 得到 word vector,再传递给 LSTM 得到 feature vector,经过全联接层后,再用一个分类器,loss 为 categorical_crossentropy


  • 数据用 tflearn 里面预先处理好的 imdb,IMDB 是一个电影评论的数据库。
from __future__ import division, print_function, absolute_import
import tflearn
from tflearn.data_utils import to_categorical, pad_sequences
from tflearn.datasets import imdb
  • path 是存储的路经,pkl 是 byte stream 格式,用这个格式在后面比较容易转换成 list 或者 tuple。
    n_words 为从数据库中取出来的词个数。
# IMDB Dataset loading
train, test, _ = imdb.load_data(path='imdb.pkl', n_words=10000,valid_portion=0.1)
trainX, trainY = train
testX, testY = test
  • pad sequence 将 inputs 转化成矩阵形式,并用 0 补齐到最大维度,这样可以保持维度的一致性。
# Data preprocessing
# Sequence padding
trainX = pad_sequences(trainX, maxlen=100, value=0.)
testX = pad_sequences(testX, maxlen=100, value=0.)
  • to_categorical 将 labels 转化为 01 向量
# Converting labels to binary vectors
trainY = to_categorical(trainY, nb_classes=2)
testY = to_categorical(testY, nb_classes=2)
  • 输入层,batch size 设为 None,length=100=前面的max sequence length
# Network building
net = tflearn.input_data([None, 100])
  • 上一层的输出作为下一层的输入,input_dim 是前面设定的从数据库中取了多少个单词,output_dim 就是得到 embedding 向量的维度

net = tflearn.embedding(net, input_dim=10000, output_dim=128)
  • 模型用的 LSTM,可以保持记忆,dropout 为了减小过拟合
net = tflearn.lstm(net, 128, dropout=0.8)
  • fully_connected 是指前一层的每一个神经元都和后一层的所有神经元相连,
    将前面 LSTM 学习到的 feature vectors 传到全网络中,可以很轻松地学习它们的非线性组合关系
    激活函数用 softmax 来得到概率值

net = tflearn.fully_connected(net, 2, activation='softmax')
  • 最后应用一个分类器,定义优化器,学习率,损失函数
net = tflearn.regression(net, optimizer='adam', learning_rate=0.001,loss='categorical_crossentropy')# Training
模型初始化
model = tflearn.DNN(net, tensorboard_verbose=0)show_metric=True 可以看到过程中的准确率
model.fit(trainX, trainY, validation_set=(testX, testY), show_metric=True,batch_size=32)

推荐阅读
历史技术博文链接汇总
也许可以找到你想要的:
[入门问题][TensorFlow][深度学习][强化学习][神经网络][机器学习][自然语言处理][聊天机器人]

这篇关于一个 tflearn 情感分析小例子的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/293954

相关文章

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis

Python主动抛出异常的各种用法和场景分析

《Python主动抛出异常的各种用法和场景分析》在Python中,我们不仅可以捕获和处理异常,还可以主动抛出异常,也就是以类的方式自定义错误的类型和提示信息,这在编程中非常有用,下面我将详细解释主动抛... 目录一、为什么要主动抛出异常?二、基本语法:raise关键字基本示例三、raise的多种用法1. 抛

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三

Mysql的主从同步/复制的原理分析

《Mysql的主从同步/复制的原理分析》:本文主要介绍Mysql的主从同步/复制的原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录为什么要主从同步?mysql主从同步架构有哪些?Mysql主从复制的原理/整体流程级联复制架构为什么好?Mysql主从复制注意

java -jar命令运行 jar包时运行外部依赖jar包的场景分析

《java-jar命令运行jar包时运行外部依赖jar包的场景分析》:本文主要介绍java-jar命令运行jar包时运行外部依赖jar包的场景分析,本文给大家介绍的非常详细,对大家的学习或工作... 目录Java -jar命令运行 jar包时如何运行外部依赖jar包场景:解决:方法一、启动参数添加: -Xb

Apache 高级配置实战之从连接保持到日志分析的完整指南

《Apache高级配置实战之从连接保持到日志分析的完整指南》本文带你从连接保持优化开始,一路走到访问控制和日志管理,最后用AWStats来分析网站数据,对Apache配置日志分析相关知识感兴趣的朋友... 目录Apache 高级配置实战:从连接保持到日志分析的完整指南前言 一、Apache 连接保持 - 性

Linux中的more 和 less区别对比分析

《Linux中的more和less区别对比分析》在Linux/Unix系统中,more和less都是用于分页查看文本文件的命令,但less是more的增强版,功能更强大,:本文主要介绍Linu... 目录1. 基础功能对比2. 常用操作对比less 的操作3. 实际使用示例4. 为什么推荐 less?5.

spring-gateway filters添加自定义过滤器实现流程分析(可插拔)

《spring-gatewayfilters添加自定义过滤器实现流程分析(可插拔)》:本文主要介绍spring-gatewayfilters添加自定义过滤器实现流程分析(可插拔),本文通过实例图... 目录需求背景需求拆解设计流程及作用域逻辑处理代码逻辑需求背景公司要求,通过公司网络代理访问的请求需要做请

Java集成Onlyoffice的示例代码及场景分析

《Java集成Onlyoffice的示例代码及场景分析》:本文主要介绍Java集成Onlyoffice的示例代码及场景分析,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 需求场景:实现文档的在线编辑,团队协作总结:两个接口 + 前端页面 + 配置项接口1:一个接口,将o

IDEA下"File is read-only"可能原因分析及"找不到或无法加载主类"的问题

《IDEA下Fileisread-only可能原因分析及找不到或无法加载主类的问题》:本文主要介绍IDEA下Fileisread-only可能原因分析及找不到或无法加载主类的问题,具有很好的参... 目录1.File is read-only”可能原因2.“找不到或无法加载主类”问题的解决总结1.File