博通BCM575系列 RDMA 网卡驱动 bnxt_re 分析(一)

2023-10-28 07:28

本文主要是介绍博通BCM575系列 RDMA 网卡驱动 bnxt_re 分析(一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介

整个BCM系列驱动分成以太网部分(bnxt_en.ko)和RDMA部分(bnxt_re.ko), 两个模块之间通过内核的auxiliary_bus进行管理.我们主要分析下bnxt_re驱动.

代码结构

这个驱动的核心是 qplib_fp.c, 这个文件主要包含了驱动的数据路径, 包括Post Send, Post Recv, Poll CQ流程的实现. ib_verbs.c主要是实现了上层的Verbs接口, qplib_rcfw.c 实现了驱动和固件通信的部分, qplib_res.c 实现了核心资源的初始化和分配函数.
在这里插入图片描述
整个驱动四万多行代码, 每个小模块精密合作共同构成了这个性能利器.

Page Buffer List(PBL)

在Infiniband中QP接收用户发送的命令, 硬件处理QP中的命令. 处理完成后硬件将结果写入CQ, 用户Poll CQ去取命令执行结果. 这整个过程需要固件和驱动的协作, QP和CQ应该怎么实现, 才能保证硬件和驱动高效协作以实现RoCE的高带宽和低时延将数据包快速可靠的交付给用户呢 ?

在bnxt_re中, 实现这个目标的方法是Page Buffer List(PBL), 驱动使用PBL作为核心去实现QP, CQ等核心资源, PBL使用类似页表的结构去管理DMA Buffer. PBL用来管理多个物理Page, 类似scatter-gather列表, 通过PBL将多个物理不连续的页组织成一个虚拟连续的空间.Page Table Entry(PTE)用来描述一个物理页面, 一个一级的PBL如下图所示, 通过多个vmalloc出来的PTE结构来描述多个物理页面.

在这里插入图片描述

PTE长度为64位, 格式如下图所示, page表示页号, 共52位. next_to_last为1表示PTE指向的页是PBL的倒数第二个页, last为1表示PTE指向的页是PBL的最后一个页,

在这里插入图片描述

二级PBL使用两次遍历去找到最终的页, 第一次使用Page Directory Entry(PDE)找到存储PTE的页, 在使用PTE找到最终的数据页.

在这里插入图片描述

page字段表示PTE Page地址的高位, 如果PTE页的大小超过了4K(用来描述页的PDE会变少), page低位应该置为0.valid表示PDE是否指向了一个有效的PTE Page.
在这里插入图片描述

有效位

类似内核页表的有效位, PBL的valid的含义和内核页表类似, 表示PTE描述的页面是否有效. 避免在一开始就分配一大片的Page, 提高性能, 并且降低资源浪费.

队列PBL

有些PBL用来描述队列, 当PBL被缓存到硬件cache的时候, current和next指针可以被保存, 用来提高cache利用率(通过预取next指针到硬件cache). 但是如果是环形队列最后一个元素, 这种prefetch机制可能会遇到一些障碍, 为了顺利的进行prefetch操作, 在PTE中加入了next_to_last指向PBL表中倒数第二个Page, last表示PTE指向队列最后一个Page.

实现原理

以一级PBL为例讲解下PBL的实现原理, 从上图中我们可以看到要实现一级PBL我们需要一片内存去存储PTE, 实际驱动中会先计算出占用的内存的大小, 然后计算出需要多少个Page, 再计算需要多少个PBL去管理这些Page. 一个4K页最多存储512个指针(4K / 8). 因此使用PBL的数量, 通过下面的方式计算得出:

npbl = npages >> 9;
if (npages % BIT(9))npbl++;
bnxt_qplib_pbl

一个PBL结构用来描述多个Page, 其中pg_arr用来存储页面的CPU地址, pg_map_arr用来存储页面的DMA地址.

struct bnxt_qplib_pbl {//PBL管理的页面数量u32				pg_count;//每个页的大小u32				pg_size;//存储PBL管理的Page的首地址void				**pg_arr;//Page首地址的DMA表示dma_addr_t			*pg_map_arr;
};
PBL的创建和初始化

PBL结构嵌入到HWQ中使用, 根据页的数量分配DMA内存.

struct bnxt_qplib_hwq {struct bnxt_qplib_pbl		pbl[PBL_LVL_MAX];
};int __alloc_pbl(struct bnxt_qplib_res *res, struct bnxt_qplib_pbl *pbl,struct bnxt_qplib_sg_info *sginfo)
{struct pci_dev *pdev;int i;if (sginfo->nopte)return 0;pdev = res->pdev;//分配PBL表pbl->pg_arr = vmalloc(sginfo->npages * sizeof(void *));if (!pbl->pg_arr)return -ENOMEM;//存储dma地址pbl->pg_map_arr = vmalloc(sginfo->npages * sizeof(dma_addr_t));if (!pbl->pg_map_arr) {vfree(pbl->pg_arr);return -ENOMEM;}//初始化页面数为0, pg_size等于要管理的sg的页面大小pbl->pg_count = 0;pbl->pg_size = sginfo->pgsize;if (!sginfo->sghead) {//从DMA_ZONE分配空间给Pagefor (i = 0; i < sginfo->npages; i++) {pbl->pg_arr[i] = msdrv_dma_alloc_coherent(&pdev->dev,pbl->pg_size,&pbl->pg_map_arr[i],GFP_KERNEL);if (!pbl->pg_arr[i])goto fail;memset(pbl->pg_arr[i], 0, pbl->pg_size);pbl->pg_count++;}}return 0;
fail:__free_pbl(res, pbl, is_umem);return -ENOMEM;
}

PBL_LVL_0表示描述PTE Page的PBL, PBL_LVL_1表示描述数据Page的PBL, 整个过程就是把数据Page的DMA地址 | flag, 然后写入到PTE中的过程. 对于队列类型的HWQ, 还需要将PTE Page的最后两项写入魔数PTU_PTE_NEXT_TO_LAST和PTU_PTE_LAST.

/* Fill PBL with PTE pointers */
dst_virt_ptr =(dma_addr_t **)hwq->pbl[PBL_LVL_0].pg_arr;
src_phys_ptr = hwq->pbl[PBL_LVL_1].pg_map_arr;
for (i = 0; i < hwq->pbl[PBL_LVL_1].pg_count; i++)//只有将地址写入到DMA内存中, PTE才算生效dst_virt_ptr[PTR_PG(i)][PTR_IDX(i)] =src_phys_ptr[i] | flag;
if (hwq_attr->type == HWQ_TYPE_QUEUE) {/* Find the last pg of the size */i = hwq->pbl[PBL_LVL_1].pg_count;dst_virt_ptr[PTR_PG(i - 1)][PTR_IDX(i - 1)] |=PTU_PTE_LAST;if (i > 1)dst_virt_ptr[PTR_PG(i - 2)][PTR_IDX(i - 2)] |=PTU_PTE_NEXT_TO_LAST;
}

PBL实现了结合了scatter-gather list和页表的优点, 实现了一个拓展性好, 且虚拟连续的内存空间.

Hardware Queue(HWQ)

HWQ是驱动中抽象出来的生产者-消费者队列, 实体是由PBL. 队列中每个元素的大小是16字节(stride=(sizeof sq_sge)), 在代码中一个元素被称为一个slot. 一个Page最多能容纳, 4K/16=256个slot. 下图是HWQ被封装后的示意图, 通过指针cons和prod的挪动实现了一个生产者-消费者队列.

在这里插入图片描述

原理

HWQ的底层是通过PBL实现, 在访问时需要将slot id翻译成对应的PBL的页号和页内偏移, 如下所示, pg_num就是页号, pg_idx就是在页面内的slot偏移.

void *bnxt_qplib_get_qe(struct bnxt_qplib_hwq *hwq,u32 indx, u64 *pg)
{u32 pg_num, pg_idx;pg_num = (indx / hwq->qe_ppg);pg_idx = (indx % hwq->qe_ppg);if (pg)*pg = (u64)&hwq->pbl_ptr[pg_num];return (void *)(hwq->pbl_ptr[pg_num] + hwq->element_size * pg_idx);
}

通过这样的读写方式, 我们可以将PBL抽象成下面的形式, 我们可以看到多个物理不连续的页面, 被划分成了连续的slot. 这些slot的数量就是HWQ的深度.

在这里插入图片描述

以下就是HWQ的实现, 其中pbl_ptr和pbl_dma_ptr存储了物理页面的首地址, depth是队列深度, element_size是每个slot的大小, qe_ppg表示每个页面能容纳多少个slot.

struct bnxt_qplib_hwq {struct pci_dev			*pdev;spinlock_t			lock;struct bnxt_qplib_pbl		pbl[PBL_LVL_MAX];enum bnxt_qplib_pbl_lvl		level;		/* 0, 1, or 2 */void				**pbl_ptr;	/* ptr for easy accessto the PBL entries */dma_addr_t			*pbl_dma_ptr;	/* ptr for easy accessto the dma_addr */u32				max_elements;u32				depth;	/* original requested depth */u16				element_size;	/* Size of each entry */u16				qe_ppg;		/* queue entry per page */u32				prod;		/* raw */u32				cons;		/* raw */
};

参考

https://lore.kernel.org/all/1581786665-23705-4-git-send-email-devesh.sharma@broadcom.com/

这篇关于博通BCM575系列 RDMA 网卡驱动 bnxt_re 分析(一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/291646

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Linux之platform平台设备驱动详解

《Linux之platform平台设备驱动详解》Linux设备驱动模型中,Platform总线作为虚拟总线统一管理无物理总线依赖的嵌入式设备,通过platform_driver和platform_de... 目录platform驱动注册platform设备注册设备树Platform驱动和设备的关系总结在 l

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方

SpringBoot中六种批量更新Mysql的方式效率对比分析

《SpringBoot中六种批量更新Mysql的方式效率对比分析》文章比较了MySQL大数据量批量更新的多种方法,指出REPLACEINTO和ONDUPLICATEKEY效率最高但存在数据风险,MyB... 目录效率比较测试结构数据库初始化测试数据批量修改方案第一种 for第二种 case when第三种

解决1093 - You can‘t specify target table报错问题及原因分析

《解决1093-Youcan‘tspecifytargettable报错问题及原因分析》MySQL1093错误因UPDATE/DELETE语句的FROM子句直接引用目标表或嵌套子查询导致,... 目录报js错原因分析具体原因解决办法方法一:使用临时表方法二:使用JOIN方法三:使用EXISTS示例总结报错原