基于相关系数法的近红外光谱波长选择用于玉米数据集的含量检测

本文主要是介绍基于相关系数法的近红外光谱波长选择用于玉米数据集的含量检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 前言

        在近红外光谱数据分析建模过程中,特征选择是其中关键的一步。特征选择的原因是全部样本信息(全波长)中存在冗余信息,使得有些有效信息被抵消同时也无法突出有用的信息,这样建立的分析模型准确度和可靠性不高且计算量较大,特征选择就是最大限度的筛选出光谱数据中的有效信息,使得筛选出来的这些信息可以代表全部的样本信息,这样筛选出来的就是特征波长。本文主要介绍采用相关系数法筛选玉米数据集的特征波长,并与全波长建模结果进行对比。

相关系数法

      皮尔逊相关系数是描述 个定距变量间联系紧密程度, 衡量变量 之间的线性相关关系的 参数, 其值介于 -1 之间 一般用 表示 计 算公式见式 ( )。见参考文献【1】

数据来源

       对网上公开的玉米数据集进行分析,下载网址可参见博客玉米数据集

       数据集中包含有 3台不同的光谱仪测量得到的近红外光谱,每台仪器测量的光谱数据波长范围为1100~2498nm,波长间隔为 2nm,共 700 个波长点。

图1 玉米数据光谱 

基于PLS的的玉米数据集含量检测

clc
clearload('corn_m51.mat')
X;                      %光谱
y;                      %含量% figure
% plot(1101:2:2500, X(:, 1:length(X)));
% xlabel('Wavelength/nm','FontName','Times New Roman','FontSize',8);
% ylabel('Absorbance','FontName','Times New Roman','FontSize',8);
% set(gca,'FontName','Times New Roman','FontSize',8);% X =  nirSNV(X);ratio = 0.7;            % 训练集占70%  
[mx, nx] = size(X);
mtrain = ceil(mx * ratio);
mtest = mx - mtrain;
[Xtrain, Xtest, Ytrain, Ytest] = ks(X,y,ceil(mx*ratio));[Rc,RMSEC,beta,yc] = fitaaa(Xtrain, Ytrain);
[Rp,RMSEP,yp] = fitbbb(Xtest,Ytest,beta);

以上,Rc,Rp分别为校正相关系数和预测相关系数;RMSEC,RMSEP分别为校正均方根误差和校正均方根误差。

结果如下

基于相关系数法的近红外光谱含量检测模型

        运用相关系数法筛选光谱值和含量值之间相关性较大的样本,建立PLS含量检测模型。

代码如下:

load('corn_m51.mat')
X;                      %光谱
y;                      %含量% figure
% plot(1101:2:2500, X(:, 1:length(X)));
% xlabel('Wavelength/nm','FontName','Times New Roman','FontSize',8);
% ylabel('Absorbance','FontName','Times New Roman','FontSize',8);
% set(gca,'FontName','Times New Roman','FontSize',8);% X =  nirSNV(X);ratio = 0.7;            % 训练集占70%  
[mx, nx] = size(X);
mtrain = ceil(mx * ratio);
mtest = mx - mtrain;
[Xtrain, Xtest, Ytrain, Ytest] = ks(X,y,ceil(mx*ratio));%% 采用相关系数选择特征波长再建模
rt = CA(Xtrain, Ytrain);
max_rt = max(rt);
min_rt = min(rt);[Rc_,RMSEC_,Rp_,RMSEP_,selectedBands] = CA_get_i(Xtrain, Ytrain, Xtest, Ytest,min_rt, max_rt, 0.001);

以上,Rc_,Rp_分别为校正相关系数和预测相关系数;RMSEC_,RMSEP_分别为校正均方根误差和校正均方根误差。

结果如下:

 选用PLS建模和先进行相关系数法波长选择再PLS建模的结果对比

 

总结

        本文选用的模型评价指标为校正相关系数(Rc,Rc_)、预测相关性数(Rp、Rp_)、校正均方根误差(RMSCE,RMSEC_)和预测均方根误差(RMSEP,RMSEP_)。相关系数用于反映变量直接相关系数密切程度的统计指标。RMSEP用于衡量预测值与真实值之间的偏差。RMSEP值越小,相关系数越大,则模型的预测能力越好。

       相比于直接选用全波长进行建模,相关系数法选用波长后建模的Rp从0.9952上升到0.9969,RMSEP从0.0308下降到0.0246,选择的变量从全波长的700减少到587。说明相关系数法可有效选择光谱与含量之间相关性更好的样本,减少冗余变量,提高模型的精度。

完整代码可从GitHubhttps://github.com/cainnyk/CSDV_corPLS下载​​​​​​​

参考文献【1】倪超,李振业,张雄,赵岭,朱婷婷,蒋雪松.基于短波近红外高光谱和深度学习的籽棉地膜分选算法[J].农业机械学报,2019,50(12):170-179.

这篇关于基于相关系数法的近红外光谱波长选择用于玉米数据集的含量检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/291160

相关文章

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I