matplotlib 进阶之Customizing Figure Layouts Using GridSpec and Other Functions

本文主要是介绍matplotlib 进阶之Customizing Figure Layouts Using GridSpec and Other Functions,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 对Gridspec的一些精细的调整
    • 利用SubplotSpec
      • fig.add_grdispec; gs.subgridspec
    • 一个利用Subplotspec的复杂例子
    • 函数链接

matplotlib教程学习笔记

如何创建网格形式的axes的组合呢:

  1. subplots()
  2. GridSpec
  3. SubplotSpec
  4. subplot2grid()
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec

第一个例子是利用subplots()和gridspec来创建一个 2 × 2 2\times 2 2×2的网格
首先利用subplots()是很容易做到这一点的:

fig1, fi_axes = plt.subplots(ncols=2, nrows=2, constrained_layout=True) #constrain_layout参数似乎是控制是否会重叠的

在这里插入图片描述

使用gridspec需要先创建一个fig对象,再创建Gridspec对象,然后将实例传入add_subplot(),gridspec的使用习惯和numpy数组是相当的

fig2 = plt.figure(constrained_layout=True)
spec2 = gridspec.GridSpec(ncols=2, nrows=2, figure=fig2)
f2_ax1 = fig2.add_subplot(spec2[0, 0])
f2_ax2 = fig2.add_subplot(spec2[0, 1])
f2_ax3 = fig2.add_subplot(spec2[1, 0])
f2_ax4 = fig2.add_subplot(spec2[1, 1])

在这里插入图片描述

gridspec有什么厉害的地方呢,我们可以通过索引和切片操作,使得某些axes占据多个格子

fig3 = plt.figure(constrained_layout=True)
gs = fig3.add_gridspec(3, 3)
f3_ax1 = fig3.add_subplot(gs[0, :])
f3_ax1.set_title('gs[0, :]')
f3_ax2 = fig3.add_subplot(gs[1, :-1])
f3_ax2.set_title('gs[1, :-1]')
f3_ax3 = fig3.add_subplot(gs[1:, -1])
f3_ax3.set_title('gs[1:, -1]')
f3_ax4 = fig3.add_subplot(gs[-1, 0])
f3_ax4.set_title('gs[-1, 0]')
f3_ax5 = fig3.add_subplot(gs[-1, -2])
f3_ax5.set_title('gs[-1, -2]');

在这里插入图片描述

fig4 = plt.figure(constrained_layout=True)
spec4 = fig4.add_gridspec(ncols=2, nrows=2)
anno_opts = dict(xy=(0.3, 0.3), xycoords='axes fraction',va='center', ha='center')f4_ax1 = fig4.add_subplot(spec4[0, 0])
f4_ax1.annotate('GridSpec[0, 0]', **anno_opts)
fig4.add_subplot(spec4[0, 1]).annotate('GridSpec[0, 1:]', **anno_opts)
fig4.add_subplot(spec4[1, 0]).annotate('GridSpec[1:, 0]', **anno_opts)
fig4.add_subplot(spec4[1, 1]).annotate('GridSpec[1:, 1:]', **anno_opts);

在这里插入图片描述

另外的,width_ratios和height_ratios参数,参数需要传入一个装有数字,比如[2, 4, 8]和
[1, 2, 4],不过这俩个表示的含义是一样的,因为参数关系的他们之间的比例:
2:4:8与1:2:4是一致的。

fig5 = plt.figure(constrained_layout=True)
widths = [2, 3, 1.5]
heights = [1, 3, 2]
spec5 = fig5.add_gridspec(ncols=3, nrows=3, width_ratios=widths,height_ratios=heights)
for row in range(3):for col in range(3):ax = fig5.add_subplot(spec5[row, col])label = 'Width: {}\nHeight: {}'.format(widths[col], heights[row])ax.annotate(label, (0.1, 0.5), xycoords='axes fraction', va='center')

在这里插入图片描述

事实上,width_ratio参数和height_ratio参数对于subplots()是十分便利的一个工具,subplots()有一个gridspec_kw参数,事实上,借此我们可以将传入gridspec的参数传入subplots(),具体形式如下:

gs_kw = dict(width_ratios=widths, height_ratios=heights)
fig6, f6_axes = plt.subplots(ncols=3, nrows=3, constrained_layout=True,gridspec_kw=gs_kw)
for r, row in enumerate(f6_axes):for c, ax in enumerate(row):label = 'Width: {}\nHeight: {}'.format(widths[c], heights[r])ax.annotate(label, (0.1, 0.5), xycoords='axes fraction', va='center')

在这里插入图片描述

subplots和gridspec二者可以结合,比如,我们可以通过subplots先创建大部分的axes,再利用gridspec组合某些部分,当然,这可能需要利用到
get_gridspec方法和remove方法

fig7, f7_axs = plt.subplots(ncols=3, nrows=3)
gs = f7_axs[1, 2].get_gridspec()
# remove the underlying axes
for ax in f7_axs[1:, -1]:ax.remove()
axbig = fig7.add_subplot(gs[1:, -1])
axbig.annotate('Big Axes \nGridSpec[1:, -1]', (0.1, 0.5),xycoords='axes fraction', va='center')fig7.tight_layout();

在这里插入图片描述

对Gridspec的一些精细的调整

当gridspec被显示使用的时候,我们可以通过一些参数来进行细微的调整,注意这个选择与constrained_layout或者figure.tight_layout是有冲突的

left : axes左边缘距离画板左侧的距离

right: axes右边缘距离画板左侧的距离

top : axes上边缘距离画板下侧的距离

bottom : axes下边缘距离画板下侧的距离

hspace: 预留给subplots之间的高度的距离

wspace: 预留给subplots之间的宽度的距离

fig8 = plt.figure(constrained_layout=False) #注意设置为False否则会冲突
gs1 = fig8.add_gridspec(nrows=3, ncols=3, right=0.88, wspace=0.05)
f8_ax1 = fig8.add_subplot(gs1[:-1, :])
f8_ax2 = fig8.add_subplot(gs1[-1, :-1])
f8_ax3 = fig8.add_subplot(gs1[-1, -1])

在这里插入图片描述
这些细微的调整只对由gridspec创建的格子有效

fig9 = plt.figure(constrained_layout=False)
gs1 = fig9.add_gridspec(nrows=3, ncols=3, left=0.05, right=0.48,wspace=0.05)
f9_ax1 = fig9.add_subplot(gs1[:-1, :])
f9_ax2 = fig9.add_subplot(gs1[-1, :-1])
f9_ax3 = fig9.add_subplot(gs1[-1, -1])gs2 = fig9.add_gridspec(nrows=3, ncols=3, left=0.55, right=0.98,hspace=0.05)
f9_ax4 = fig9.add_subplot(gs2[:, :-1])
f9_ax5 = fig9.add_subplot(gs2[:-1, -1])
f9_ax6 = fig9.add_subplot(gs2[-1, -1])

在这里插入图片描述

利用SubplotSpec

fig.add_grdispec; gs.subgridspec

fig10 = plt.figure(constrained_layout=True)
gs0 = fig10.add_gridspec(1, 2)gs00 = gs0[0].subgridspec(2, 3)
gs01 = gs0[1].subgridspec(3, 2)for a in range(2):for b in range(3):fig10.add_subplot(gs00[a, b])fig10.add_subplot(gs01[b, a])

在这里插入图片描述

一个利用Subplotspec的复杂例子

import numpy as np
from itertools import productdef squiggle_xy(a, b, c, d, i=np.arange(0.0, 2*np.pi, 0.05)):return np.sin(i*a)*np.cos(i*b), np.sin(i*c)*np.cos(i*d)fig11 = plt.figure(figsize=(8, 8), constrained_layout=False)# gridspec inside gridspec
outer_grid = fig11.add_gridspec(4, 4, wspace=0.0, hspace=0.0) #4 x 4个大格子for i in range(16):inner_grid = outer_grid[i].subgridspec(3, 3, wspace=0.0, hspace=0.0) #3 x 3个小格子a, b = int(i/4)+1, i % 4+1for j, (c, d) in enumerate(product(range(1, 4), repeat=2)):ax = plt.Subplot(fig11, inner_grid[j])ax.plot(*squiggle_xy(a, b, c, d))ax.set_xticks([])ax.set_yticks([])fig11.add_subplot(ax)all_axes = fig11.get_axes()# show only the outside spines
# 之显示每个大格子外面的边框,小格子的边框就不显示
for ax in all_axes:for sp in ax.spines.values():sp.set_visible(False)if ax.is_first_row():ax.spines['top'].set_visible(True)if ax.is_last_row():ax.spines['bottom'].set_visible(True)if ax.is_first_col():ax.spines['left'].set_visible(True)if ax.is_last_col():ax.spines['right'].set_visible(True)plt.show()

在这里插入图片描述

函数链接

subplots
GridSpec
Subplotsepc
subplot2grid()
subplots.adjust()

这篇关于matplotlib 进阶之Customizing Figure Layouts Using GridSpec and Other Functions的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/291134

相关文章

从基础到进阶详解Python条件判断的实用指南

《从基础到进阶详解Python条件判断的实用指南》本文将通过15个实战案例,带你大家掌握条件判断的核心技巧,并从基础语法到高级应用一网打尽,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录​引言:条件判断为何如此重要一、基础语法:三行代码构建决策系统二、多条件分支:elif的魔法三、

Python进阶之列表推导式的10个核心技巧

《Python进阶之列表推导式的10个核心技巧》在Python编程中,列表推导式(ListComprehension)是提升代码效率的瑞士军刀,本文将通过真实场景案例,揭示列表推导式的进阶用法,希望对... 目录一、基础语法重构:理解推导式的底层逻辑二、嵌套循环:破解多维数据处理难题三、条件表达式:实现分支

基于Python编写自动化邮件发送程序(进阶版)

《基于Python编写自动化邮件发送程序(进阶版)》在数字化时代,自动化邮件发送功能已成为企业和个人提升工作效率的重要工具,本文将使用Python编写一个简单的自动化邮件发送程序,希望对大家有所帮助... 目录理解SMTP协议基础配置开发环境构建邮件发送函数核心逻辑实现完整发送流程添加附件支持功能实现htm

基于Python实现进阶版PDF合并/拆分工具

《基于Python实现进阶版PDF合并/拆分工具》在数字化时代,PDF文件已成为日常工作和学习中不可或缺的一部分,本文将详细介绍一款简单易用的PDF工具,帮助用户轻松完成PDF文件的合并与拆分操作... 目录工具概述环境准备界面说明合并PDF文件拆分PDF文件高级技巧常见问题完整源代码总结在数字化时代,PD

javaSE类和对象进阶用法举例详解

《javaSE类和对象进阶用法举例详解》JavaSE的面向对象编程是软件开发中的基石,它通过类和对象的概念,实现了代码的模块化、可复用性和灵活性,:本文主要介绍javaSE类和对象进阶用法的相关资... 目录前言一、封装1.访问限定符2.包2.1包的概念2.2导入包2.3自定义包2.4常见的包二、stati

C语言进阶(预处理命令详解)

《C语言进阶(预处理命令详解)》文章讲解了宏定义规范、头文件包含方式及条件编译应用,强调带参宏需加括号避免计算错误,头文件应声明函数原型以便主函数调用,条件编译通过宏定义控制代码编译,适用于测试与模块... 目录1.宏定义1.1不带参宏1.2带参宏2.头文件的包含2.1头文件中的内容2.2工程结构3.条件编

从入门到进阶讲解Python自动化Playwright实战指南

《从入门到进阶讲解Python自动化Playwright实战指南》Playwright是针对Python语言的纯自动化工具,它可以通过单个API自动执行Chromium,Firefox和WebKit... 目录Playwright 简介核心优势安装步骤观点与案例结合Playwright 核心功能从零开始学习

Windows环境下解决Matplotlib中文字体显示问题的详细教程

《Windows环境下解决Matplotlib中文字体显示问题的详细教程》本文详细介绍了在Windows下解决Matplotlib中文显示问题的方法,包括安装字体、更新缓存、配置文件设置及编码調整,并... 目录引言问题分析解决方案详解1. 检查系统已安装字体2. 手动添加中文字体(以SimHei为例)步骤

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据