matplotlib 进阶之Customizing Figure Layouts Using GridSpec and Other Functions

本文主要是介绍matplotlib 进阶之Customizing Figure Layouts Using GridSpec and Other Functions,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 对Gridspec的一些精细的调整
    • 利用SubplotSpec
      • fig.add_grdispec; gs.subgridspec
    • 一个利用Subplotspec的复杂例子
    • 函数链接

matplotlib教程学习笔记

如何创建网格形式的axes的组合呢:

  1. subplots()
  2. GridSpec
  3. SubplotSpec
  4. subplot2grid()
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec

第一个例子是利用subplots()和gridspec来创建一个 2 × 2 2\times 2 2×2的网格
首先利用subplots()是很容易做到这一点的:

fig1, fi_axes = plt.subplots(ncols=2, nrows=2, constrained_layout=True) #constrain_layout参数似乎是控制是否会重叠的

在这里插入图片描述

使用gridspec需要先创建一个fig对象,再创建Gridspec对象,然后将实例传入add_subplot(),gridspec的使用习惯和numpy数组是相当的

fig2 = plt.figure(constrained_layout=True)
spec2 = gridspec.GridSpec(ncols=2, nrows=2, figure=fig2)
f2_ax1 = fig2.add_subplot(spec2[0, 0])
f2_ax2 = fig2.add_subplot(spec2[0, 1])
f2_ax3 = fig2.add_subplot(spec2[1, 0])
f2_ax4 = fig2.add_subplot(spec2[1, 1])

在这里插入图片描述

gridspec有什么厉害的地方呢,我们可以通过索引和切片操作,使得某些axes占据多个格子

fig3 = plt.figure(constrained_layout=True)
gs = fig3.add_gridspec(3, 3)
f3_ax1 = fig3.add_subplot(gs[0, :])
f3_ax1.set_title('gs[0, :]')
f3_ax2 = fig3.add_subplot(gs[1, :-1])
f3_ax2.set_title('gs[1, :-1]')
f3_ax3 = fig3.add_subplot(gs[1:, -1])
f3_ax3.set_title('gs[1:, -1]')
f3_ax4 = fig3.add_subplot(gs[-1, 0])
f3_ax4.set_title('gs[-1, 0]')
f3_ax5 = fig3.add_subplot(gs[-1, -2])
f3_ax5.set_title('gs[-1, -2]');

在这里插入图片描述

fig4 = plt.figure(constrained_layout=True)
spec4 = fig4.add_gridspec(ncols=2, nrows=2)
anno_opts = dict(xy=(0.3, 0.3), xycoords='axes fraction',va='center', ha='center')f4_ax1 = fig4.add_subplot(spec4[0, 0])
f4_ax1.annotate('GridSpec[0, 0]', **anno_opts)
fig4.add_subplot(spec4[0, 1]).annotate('GridSpec[0, 1:]', **anno_opts)
fig4.add_subplot(spec4[1, 0]).annotate('GridSpec[1:, 0]', **anno_opts)
fig4.add_subplot(spec4[1, 1]).annotate('GridSpec[1:, 1:]', **anno_opts);

在这里插入图片描述

另外的,width_ratios和height_ratios参数,参数需要传入一个装有数字,比如[2, 4, 8]和
[1, 2, 4],不过这俩个表示的含义是一样的,因为参数关系的他们之间的比例:
2:4:8与1:2:4是一致的。

fig5 = plt.figure(constrained_layout=True)
widths = [2, 3, 1.5]
heights = [1, 3, 2]
spec5 = fig5.add_gridspec(ncols=3, nrows=3, width_ratios=widths,height_ratios=heights)
for row in range(3):for col in range(3):ax = fig5.add_subplot(spec5[row, col])label = 'Width: {}\nHeight: {}'.format(widths[col], heights[row])ax.annotate(label, (0.1, 0.5), xycoords='axes fraction', va='center')

在这里插入图片描述

事实上,width_ratio参数和height_ratio参数对于subplots()是十分便利的一个工具,subplots()有一个gridspec_kw参数,事实上,借此我们可以将传入gridspec的参数传入subplots(),具体形式如下:

gs_kw = dict(width_ratios=widths, height_ratios=heights)
fig6, f6_axes = plt.subplots(ncols=3, nrows=3, constrained_layout=True,gridspec_kw=gs_kw)
for r, row in enumerate(f6_axes):for c, ax in enumerate(row):label = 'Width: {}\nHeight: {}'.format(widths[c], heights[r])ax.annotate(label, (0.1, 0.5), xycoords='axes fraction', va='center')

在这里插入图片描述

subplots和gridspec二者可以结合,比如,我们可以通过subplots先创建大部分的axes,再利用gridspec组合某些部分,当然,这可能需要利用到
get_gridspec方法和remove方法

fig7, f7_axs = plt.subplots(ncols=3, nrows=3)
gs = f7_axs[1, 2].get_gridspec()
# remove the underlying axes
for ax in f7_axs[1:, -1]:ax.remove()
axbig = fig7.add_subplot(gs[1:, -1])
axbig.annotate('Big Axes \nGridSpec[1:, -1]', (0.1, 0.5),xycoords='axes fraction', va='center')fig7.tight_layout();

在这里插入图片描述

对Gridspec的一些精细的调整

当gridspec被显示使用的时候,我们可以通过一些参数来进行细微的调整,注意这个选择与constrained_layout或者figure.tight_layout是有冲突的

left : axes左边缘距离画板左侧的距离

right: axes右边缘距离画板左侧的距离

top : axes上边缘距离画板下侧的距离

bottom : axes下边缘距离画板下侧的距离

hspace: 预留给subplots之间的高度的距离

wspace: 预留给subplots之间的宽度的距离

fig8 = plt.figure(constrained_layout=False) #注意设置为False否则会冲突
gs1 = fig8.add_gridspec(nrows=3, ncols=3, right=0.88, wspace=0.05)
f8_ax1 = fig8.add_subplot(gs1[:-1, :])
f8_ax2 = fig8.add_subplot(gs1[-1, :-1])
f8_ax3 = fig8.add_subplot(gs1[-1, -1])

在这里插入图片描述
这些细微的调整只对由gridspec创建的格子有效

fig9 = plt.figure(constrained_layout=False)
gs1 = fig9.add_gridspec(nrows=3, ncols=3, left=0.05, right=0.48,wspace=0.05)
f9_ax1 = fig9.add_subplot(gs1[:-1, :])
f9_ax2 = fig9.add_subplot(gs1[-1, :-1])
f9_ax3 = fig9.add_subplot(gs1[-1, -1])gs2 = fig9.add_gridspec(nrows=3, ncols=3, left=0.55, right=0.98,hspace=0.05)
f9_ax4 = fig9.add_subplot(gs2[:, :-1])
f9_ax5 = fig9.add_subplot(gs2[:-1, -1])
f9_ax6 = fig9.add_subplot(gs2[-1, -1])

在这里插入图片描述

利用SubplotSpec

fig.add_grdispec; gs.subgridspec

fig10 = plt.figure(constrained_layout=True)
gs0 = fig10.add_gridspec(1, 2)gs00 = gs0[0].subgridspec(2, 3)
gs01 = gs0[1].subgridspec(3, 2)for a in range(2):for b in range(3):fig10.add_subplot(gs00[a, b])fig10.add_subplot(gs01[b, a])

在这里插入图片描述

一个利用Subplotspec的复杂例子

import numpy as np
from itertools import productdef squiggle_xy(a, b, c, d, i=np.arange(0.0, 2*np.pi, 0.05)):return np.sin(i*a)*np.cos(i*b), np.sin(i*c)*np.cos(i*d)fig11 = plt.figure(figsize=(8, 8), constrained_layout=False)# gridspec inside gridspec
outer_grid = fig11.add_gridspec(4, 4, wspace=0.0, hspace=0.0) #4 x 4个大格子for i in range(16):inner_grid = outer_grid[i].subgridspec(3, 3, wspace=0.0, hspace=0.0) #3 x 3个小格子a, b = int(i/4)+1, i % 4+1for j, (c, d) in enumerate(product(range(1, 4), repeat=2)):ax = plt.Subplot(fig11, inner_grid[j])ax.plot(*squiggle_xy(a, b, c, d))ax.set_xticks([])ax.set_yticks([])fig11.add_subplot(ax)all_axes = fig11.get_axes()# show only the outside spines
# 之显示每个大格子外面的边框,小格子的边框就不显示
for ax in all_axes:for sp in ax.spines.values():sp.set_visible(False)if ax.is_first_row():ax.spines['top'].set_visible(True)if ax.is_last_row():ax.spines['bottom'].set_visible(True)if ax.is_first_col():ax.spines['left'].set_visible(True)if ax.is_last_col():ax.spines['right'].set_visible(True)plt.show()

在这里插入图片描述

函数链接

subplots
GridSpec
Subplotsepc
subplot2grid()
subplots.adjust()

这篇关于matplotlib 进阶之Customizing Figure Layouts Using GridSpec and Other Functions的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:https://blog.csdn.net/MTandHJ/article/details/90245609
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/291134

相关文章

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键

Python中OpenCV与Matplotlib的图像操作入门指南

《Python中OpenCV与Matplotlib的图像操作入门指南》:本文主要介绍Python中OpenCV与Matplotlib的图像操作指南,本文通过实例代码给大家介绍的非常详细,对大家的学... 目录一、环境准备二、图像的基本操作1. 图像读取、显示与保存 使用OpenCV操作2. 像素级操作3.

8种快速易用的Python Matplotlib数据可视化方法汇总(附源码)

《8种快速易用的PythonMatplotlib数据可视化方法汇总(附源码)》你是否曾经面对一堆复杂的数据,却不知道如何让它们变得直观易懂?别慌,Python的Matplotlib库是你数据可视化的... 目录引言1. 折线图(Line Plot)——趋势分析2. 柱状图(Bar Chart)——对比分析3

Python使用Matplotlib绘制3D曲面图详解

《Python使用Matplotlib绘制3D曲面图详解》:本文主要介绍Python使用Matplotlib绘制3D曲面图,在Python中,使用Matplotlib库绘制3D曲面图可以通过mpl... 目录准备工作绘制简单的 3D 曲面图绘制 3D 曲面图添加线框和透明度控制图形视角Matplotlib

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

MySQL进阶之路索引失效的11种情况详析

《MySQL进阶之路索引失效的11种情况详析》:本文主要介绍MySQL查询优化中的11种常见情况,包括索引的使用和优化策略,通过这些策略,开发者可以显著提升查询性能,需要的朋友可以参考下... 目录前言图示1. 使用不等式操作符(!=, <, >)2. 使用 OR 连接多个条件3. 对索引字段进行计算操作4

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程