Ultralytics(YoloV8)开发环境配置,训练,模型转换,部署全流程测试记录

本文主要是介绍Ultralytics(YoloV8)开发环境配置,训练,模型转换,部署全流程测试记录,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

关键词:windows docker tensorRT Ultralytics YoloV8

配置开发环境的方法:

1.Windows的虚拟机上配置:

Python3.10
使用Ultralytics 可以得到pt onnx,但无法转为engine,找不到GPU,手动转也不行,找不到GPU。这个应该是需要可以支持硬件虚拟化的GPU,才能在虚拟机中使用GPU。

2.Windows 上配置:

Python3.10
Cuda 12.1
Cudnn 8.9.4
TensorRT-8.6.1.6
使用Ultralytics 可以得到pt onnx,但无法转为engine,需要手动转换。这个实际上是跑通了的。

3.Docker中的配置(推荐)

Windows上的docker
使用的是Nvidia配置好环境的docker,包括tensorflow,nvcc,等。

启动镜像:

docker run --shm-size 8G --gpus all -it --rm tensorflow/tensorflow:latest-gpu

在docker上安装libgl,Ultralytics等。

apt-get update && apt-get install libgl1
pip install ultralytics
pip install nvidia-tensorrt

然后进行提交,重新生成一个新的镜像文件:

在这里插入图片描述
如果不进行提交,则刚才安装的所有软件包,在重启以后就会丢失,需要重新再装一遍。

在docker desktop中可以看到所有的镜像

在这里插入图片描述
后续启动镜像可以使用

docker run --shm-size 8G --gpus all -it --rm yolov8:2.0

–shm-size 8G 一定要有,否则在dataloader阶段会报错,如下所示:
在这里插入图片描述
为了搜索引擎可以识别到这篇文章,将内容打出来:
RuntimeError: DataLoader worker (pid 181032) is killed by signal: Bus error. It is possible that dataloader’s workers are out of shared memory. Please try to raise your shared memory limit

更加详细的介绍,可以参考:https://blog.csdn.net/zywvvd/article/details/110647825

新生成的镜像,可以进行打包,在离线环境中使用。

docker save yolov8:2.0 |gzip > yolov8.tar.gz

将生成的镜像拷贝到离线环境,

docker  load  < yolov8.tar.gz

ultralytics 快速上手

参考:https://docs.ultralytics.com/modes/
官网的介绍很详细,按照指引,基本上可以配置成功。

模型训练:

def train():#model = YOLO("yolov8n.yaml")  # build a new model from scratchmodel = YOLO("yolov8n.pt")  # load a pretrained model (recommended for training)model.train(data="coco128.yaml", epochs=3,batch=8)  # train the modelmetrics = model.val()  # evaluate model performance on the validation set#results = model("https://ultralytics.com/images/bus.jpg")  # predict on an imagepath = model.export(format="onnx")  # export the model to ONNX format

模型转换:

def eval():model = YOLO("best.pt")  # load a pretrained model (recommended for training)model.export(format="engine",device=0,simplify=True)model.export(format="onnx", simplify=True)  # export the model to onnx format

此时在目录下的文件如下:
在这里插入图片描述

当使用Ultralytics无法导出engine格式的文件时,需要使用tensorRT提供的trtexec进行转换。
事实上,在笔者的测试过程中,即使Ultralytics可以导出engine格式的模型,c++API的tensorrt也无法加载使用。即使python中和c++中使用的tensorRT的版本一致。
在windows平台下,我们可以使用如下的方法进行转换,可以写一个.bat脚本

@echo off
trtexec.exe --onnx=best.onnx --saveEngine=best.engine  --fp16 --workspace=2048
:end
PAUSE

对于可变尺寸,需要

@echo offtrtexec.exe --onnx=best.onnx --saveEngine=best.engine --minShapes=images:1x3x640x640 --optShapes=images:8x3x640x640 --maxShapes=images:8x3x640x640 --fp16 --workspace=2048
:end
PAUSE

使用tensorrt加载engine文件进行推理

方法1:python

Python,需要安装pycuda
直接使用

pip install pycuda

进行安装。

def engineeval():# 创建logger:日志记录器logger = trt.Logger(trt.Logger.WARNING)# 创建runtime并反序列化生成enginewith open("best.engine", "rb") as f, trt.Runtime(logger) as runtime:engine = runtime.deserialize_cuda_engine(f.read())# 创建cuda流stream = cuda.Stream()# 创建context并进行推理with engine.create_execution_context() as context:# 分配CPU锁页内存和GPU显存h_input = cuda.pagelocked_empty(trt.volume(context.get_binding_shape(0)), dtype=np.float32)h_output = cuda.pagelocked_empty(trt.volume(context.get_binding_shape(1)), dtype=np.float32)d_input = cuda.mem_alloc(h_input.nbytes)d_output = cuda.mem_alloc(h_output.nbytes)# Transfer input data to the GPU.cuda.memcpy_htod_async(d_input, h_input, stream)# Run inference.context.execute_async_v2(bindings=[int(d_input), int(d_output)], stream_handle=stream.handle)# Transfer predictions back from the GPU.cuda.memcpy_dtoh_async(h_output, d_output, stream)# Synchronize the streamstream.synchronize()# Return the host output. 该数据等同于原始模型的输出数据

在调试界面,可以看到输入矩阵维度是1228800=13640*640
在这里插入图片描述
至于推理的精度,还需要传入实际的图像进行测试。这里就不在python环境下测试了。

方法2:c++

生产环境一般是c++,使用tensorrt c++ API进行engine文件的加载与推理,
参考:https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#perform_inference_c

代码实现:

#include <iostream>
#include <fstream>#include "NvInfer.h"#include "cuda_runtime.h"using namespace nvinfer1;class Logger : public ILogger
{void log(Severity severity, const char* msg) noexcept override{// suppress info-level messagesif (severity <= Severity::kWARNING)std::cout << msg << std::endl;}
};int main()
{Logger gLogger;IRuntime* runtime = createInferRuntime(gLogger);std::ifstream model("best.engine", std::ios::binary);std::string modelString((std::istreambuf_iterator<char>(model)), std::istreambuf_iterator<char>());ICudaEngine* engine =runtime->deserializeCudaEngine(modelString.c_str(), modelString.length());int nNum = engine->getNbBindings();  //获取绑定的数量auto nDim0 = engine->getBindingDimensions(std::min(0, nNum - 1));auto nDim1 = engine->getBindingDimensions(std::min(1, nNum - 1));int nSize0 = nDim0.d[0] * nDim0.d[1] * nDim0.d[2] * nDim0.d[3];int nSize1 = nDim1.d[0] * nDim1.d[1] * nDim1.d[2];//都是浮点类型auto dt0 = engine->getBindingDataType(0);auto dt1 = engine->getBindingDataType(1);auto name = engine->getName();auto input = engine->getBindingName(0);auto output = engine->getBindingName(1);//准备输入输出空间auto inputBuffer = new float[nSize0];auto outputBuffer = new float[nSize1];memset(inputBuffer, 0, nSize0 * sizeof(float));memset(outputBuffer, 0, nSize1 * sizeof(float));bool ret = false;//创建执行上下文IExecutionContext* context = engine->createExecutionContext();//执行推理:拷贝到GPU->enqueueV3->拷贝回CPUif(1){void* buffers[2];//Allocate GPU memory for Input / Output datacudaMalloc(&buffers[0], nSize0 * sizeof(float));cudaMalloc(&buffers[1], nSize1 * sizeof(float));cudaStream_t stream;cudaStreamCreate(&stream);cudaMemcpyAsync(buffers[0], inputBuffer, nSize0 * sizeof(float), cudaMemcpyHostToDevice, stream);context->setTensorAddress(input, buffers[0]);context->setTensorAddress(output, buffers[1]);ret = context->enqueueV3(stream);if (!ret)std::cout << "error" << std::endl;cudaMemcpyAsync(outputBuffer, buffers[1], nSize1 * sizeof(float), cudaMemcpyDeviceToHost, stream);cudaStreamSynchronize(stream);cudaStreamDestroy(stream);cudaFree(buffers[0]);cudaFree(buffers[1]);}delete[]inputBuffer;delete[] outputBuffer;std::cout << "Done!" << std::endl;context->destroy();engine->destroy();runtime->destroy();return 0;
}

执行结果:
在这里插入图片描述
可以看到和python端是相同的。

然后可以做一些工程化的工作,比如对c++代码封装成为一个dll。后面还需要加一些前处理和后处理的步骤,将模型的结果进行解析。

这篇关于Ultralytics(YoloV8)开发环境配置,训练,模型转换,部署全流程测试记录的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/2888

相关文章

SQL Server配置管理器无法打开的四种解决方法

《SQLServer配置管理器无法打开的四种解决方法》本文总结了SQLServer配置管理器无法打开的四种解决方法,文中通过图文示例介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录方法一:桌面图标进入方法二:运行窗口进入检查版本号对照表php方法三:查找文件路径方法四:检查 S

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

Spring Security中用户名和密码的验证完整流程

《SpringSecurity中用户名和密码的验证完整流程》本文给大家介绍SpringSecurity中用户名和密码的验证完整流程,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定... 首先创建了一个UsernamePasswordAuthenticationTChina编程oken对象,这是S

Linux中SSH服务配置的全面指南

《Linux中SSH服务配置的全面指南》作为网络安全工程师,SSH(SecureShell)服务的安全配置是我们日常工作中不可忽视的重要环节,本文将从基础配置到高级安全加固,全面解析SSH服务的各项参... 目录概述基础配置详解端口与监听设置主机密钥配置认证机制强化禁用密码认证禁止root直接登录实现双因素

在Spring Boot中集成RabbitMQ的实战记录

《在SpringBoot中集成RabbitMQ的实战记录》本文介绍SpringBoot集成RabbitMQ的步骤,涵盖配置连接、消息发送与接收,并对比两种定义Exchange与队列的方式:手动声明(... 目录前言准备工作1. 安装 RabbitMQ2. 消息发送者(Producer)配置1. 创建 Spr

SQLite3 在嵌入式C环境中存储音频/视频文件的最优方案

《SQLite3在嵌入式C环境中存储音频/视频文件的最优方案》本文探讨了SQLite3在嵌入式C环境中存储音视频文件的优化方案,推荐采用文件路径存储结合元数据管理,兼顾效率与资源限制,小文件可使用B... 目录SQLite3 在嵌入式C环境中存储音频/视频文件的专业方案一、存储策略选择1. 直接存储 vs

嵌入式数据库SQLite 3配置使用讲解

《嵌入式数据库SQLite3配置使用讲解》本文强调嵌入式项目中SQLite3数据库的重要性,因其零配置、轻量级、跨平台及事务处理特性,可保障数据溯源与责任明确,详细讲解安装配置、基础语法及SQLit... 目录0、惨痛教训1、SQLite3环境配置(1)、下载安装SQLite库(2)、解压下载的文件(3)、

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

Linux如何快速检查服务器的硬件配置和性能指标

《Linux如何快速检查服务器的硬件配置和性能指标》在运维和开发工作中,我们经常需要快速检查Linux服务器的硬件配置和性能指标,本文将以CentOS为例,介绍如何通过命令行快速获取这些关键信息,... 目录引言一、查询CPU核心数编程(几C?)1. 使用 nproc(最简单)2. 使用 lscpu(详细信

利用Python脚本实现批量将图片转换为WebP格式

《利用Python脚本实现批量将图片转换为WebP格式》Python语言的简洁语法和库支持使其成为图像处理的理想选择,本文将介绍如何利用Python实现批量将图片转换为WebP格式的脚本,WebP作为... 目录简介1. python在图像处理中的应用2. WebP格式的原理和优势2.1 WebP格式与传统