Ultralytics(YoloV8)开发环境配置,训练,模型转换,部署全流程测试记录

本文主要是介绍Ultralytics(YoloV8)开发环境配置,训练,模型转换,部署全流程测试记录,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

关键词:windows docker tensorRT Ultralytics YoloV8

配置开发环境的方法:

1.Windows的虚拟机上配置:

Python3.10
使用Ultralytics 可以得到pt onnx,但无法转为engine,找不到GPU,手动转也不行,找不到GPU。这个应该是需要可以支持硬件虚拟化的GPU,才能在虚拟机中使用GPU。

2.Windows 上配置:

Python3.10
Cuda 12.1
Cudnn 8.9.4
TensorRT-8.6.1.6
使用Ultralytics 可以得到pt onnx,但无法转为engine,需要手动转换。这个实际上是跑通了的。

3.Docker中的配置(推荐)

Windows上的docker
使用的是Nvidia配置好环境的docker,包括tensorflow,nvcc,等。

启动镜像:

docker run --shm-size 8G --gpus all -it --rm tensorflow/tensorflow:latest-gpu

在docker上安装libgl,Ultralytics等。

apt-get update && apt-get install libgl1
pip install ultralytics
pip install nvidia-tensorrt

然后进行提交,重新生成一个新的镜像文件:

在这里插入图片描述
如果不进行提交,则刚才安装的所有软件包,在重启以后就会丢失,需要重新再装一遍。

在docker desktop中可以看到所有的镜像

在这里插入图片描述
后续启动镜像可以使用

docker run --shm-size 8G --gpus all -it --rm yolov8:2.0

–shm-size 8G 一定要有,否则在dataloader阶段会报错,如下所示:
在这里插入图片描述
为了搜索引擎可以识别到这篇文章,将内容打出来:
RuntimeError: DataLoader worker (pid 181032) is killed by signal: Bus error. It is possible that dataloader’s workers are out of shared memory. Please try to raise your shared memory limit

更加详细的介绍,可以参考:https://blog.csdn.net/zywvvd/article/details/110647825

新生成的镜像,可以进行打包,在离线环境中使用。

docker save yolov8:2.0 |gzip > yolov8.tar.gz

将生成的镜像拷贝到离线环境,

docker  load  < yolov8.tar.gz

ultralytics 快速上手

参考:https://docs.ultralytics.com/modes/
官网的介绍很详细,按照指引,基本上可以配置成功。

模型训练:

def train():#model = YOLO("yolov8n.yaml")  # build a new model from scratchmodel = YOLO("yolov8n.pt")  # load a pretrained model (recommended for training)model.train(data="coco128.yaml", epochs=3,batch=8)  # train the modelmetrics = model.val()  # evaluate model performance on the validation set#results = model("https://ultralytics.com/images/bus.jpg")  # predict on an imagepath = model.export(format="onnx")  # export the model to ONNX format

模型转换:

def eval():model = YOLO("best.pt")  # load a pretrained model (recommended for training)model.export(format="engine",device=0,simplify=True)model.export(format="onnx", simplify=True)  # export the model to onnx format

此时在目录下的文件如下:
在这里插入图片描述

当使用Ultralytics无法导出engine格式的文件时,需要使用tensorRT提供的trtexec进行转换。
事实上,在笔者的测试过程中,即使Ultralytics可以导出engine格式的模型,c++API的tensorrt也无法加载使用。即使python中和c++中使用的tensorRT的版本一致。
在windows平台下,我们可以使用如下的方法进行转换,可以写一个.bat脚本

@echo off
trtexec.exe --onnx=best.onnx --saveEngine=best.engine  --fp16 --workspace=2048
:end
PAUSE

对于可变尺寸,需要

@echo offtrtexec.exe --onnx=best.onnx --saveEngine=best.engine --minShapes=images:1x3x640x640 --optShapes=images:8x3x640x640 --maxShapes=images:8x3x640x640 --fp16 --workspace=2048
:end
PAUSE

使用tensorrt加载engine文件进行推理

方法1:python

Python,需要安装pycuda
直接使用

pip install pycuda

进行安装。

def engineeval():# 创建logger:日志记录器logger = trt.Logger(trt.Logger.WARNING)# 创建runtime并反序列化生成enginewith open("best.engine", "rb") as f, trt.Runtime(logger) as runtime:engine = runtime.deserialize_cuda_engine(f.read())# 创建cuda流stream = cuda.Stream()# 创建context并进行推理with engine.create_execution_context() as context:# 分配CPU锁页内存和GPU显存h_input = cuda.pagelocked_empty(trt.volume(context.get_binding_shape(0)), dtype=np.float32)h_output = cuda.pagelocked_empty(trt.volume(context.get_binding_shape(1)), dtype=np.float32)d_input = cuda.mem_alloc(h_input.nbytes)d_output = cuda.mem_alloc(h_output.nbytes)# Transfer input data to the GPU.cuda.memcpy_htod_async(d_input, h_input, stream)# Run inference.context.execute_async_v2(bindings=[int(d_input), int(d_output)], stream_handle=stream.handle)# Transfer predictions back from the GPU.cuda.memcpy_dtoh_async(h_output, d_output, stream)# Synchronize the streamstream.synchronize()# Return the host output. 该数据等同于原始模型的输出数据

在调试界面,可以看到输入矩阵维度是1228800=13640*640
在这里插入图片描述
至于推理的精度,还需要传入实际的图像进行测试。这里就不在python环境下测试了。

方法2:c++

生产环境一般是c++,使用tensorrt c++ API进行engine文件的加载与推理,
参考:https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#perform_inference_c

代码实现:

#include <iostream>
#include <fstream>#include "NvInfer.h"#include "cuda_runtime.h"using namespace nvinfer1;class Logger : public ILogger
{void log(Severity severity, const char* msg) noexcept override{// suppress info-level messagesif (severity <= Severity::kWARNING)std::cout << msg << std::endl;}
};int main()
{Logger gLogger;IRuntime* runtime = createInferRuntime(gLogger);std::ifstream model("best.engine", std::ios::binary);std::string modelString((std::istreambuf_iterator<char>(model)), std::istreambuf_iterator<char>());ICudaEngine* engine =runtime->deserializeCudaEngine(modelString.c_str(), modelString.length());int nNum = engine->getNbBindings();  //获取绑定的数量auto nDim0 = engine->getBindingDimensions(std::min(0, nNum - 1));auto nDim1 = engine->getBindingDimensions(std::min(1, nNum - 1));int nSize0 = nDim0.d[0] * nDim0.d[1] * nDim0.d[2] * nDim0.d[3];int nSize1 = nDim1.d[0] * nDim1.d[1] * nDim1.d[2];//都是浮点类型auto dt0 = engine->getBindingDataType(0);auto dt1 = engine->getBindingDataType(1);auto name = engine->getName();auto input = engine->getBindingName(0);auto output = engine->getBindingName(1);//准备输入输出空间auto inputBuffer = new float[nSize0];auto outputBuffer = new float[nSize1];memset(inputBuffer, 0, nSize0 * sizeof(float));memset(outputBuffer, 0, nSize1 * sizeof(float));bool ret = false;//创建执行上下文IExecutionContext* context = engine->createExecutionContext();//执行推理:拷贝到GPU->enqueueV3->拷贝回CPUif(1){void* buffers[2];//Allocate GPU memory for Input / Output datacudaMalloc(&buffers[0], nSize0 * sizeof(float));cudaMalloc(&buffers[1], nSize1 * sizeof(float));cudaStream_t stream;cudaStreamCreate(&stream);cudaMemcpyAsync(buffers[0], inputBuffer, nSize0 * sizeof(float), cudaMemcpyHostToDevice, stream);context->setTensorAddress(input, buffers[0]);context->setTensorAddress(output, buffers[1]);ret = context->enqueueV3(stream);if (!ret)std::cout << "error" << std::endl;cudaMemcpyAsync(outputBuffer, buffers[1], nSize1 * sizeof(float), cudaMemcpyDeviceToHost, stream);cudaStreamSynchronize(stream);cudaStreamDestroy(stream);cudaFree(buffers[0]);cudaFree(buffers[1]);}delete[]inputBuffer;delete[] outputBuffer;std::cout << "Done!" << std::endl;context->destroy();engine->destroy();runtime->destroy();return 0;
}

执行结果:
在这里插入图片描述
可以看到和python端是相同的。

然后可以做一些工程化的工作,比如对c++代码封装成为一个dll。后面还需要加一些前处理和后处理的步骤,将模型的结果进行解析。

这篇关于Ultralytics(YoloV8)开发环境配置,训练,模型转换,部署全流程测试记录的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/2888

相关文章

基于 Cursor 开发 Spring Boot 项目详细攻略

《基于Cursor开发SpringBoot项目详细攻略》Cursor是集成GPT4、Claude3.5等LLM的VSCode类AI编程工具,支持SpringBoot项目开发全流程,涵盖环境配... 目录cursor是什么?基于 Cursor 开发 Spring Boot 项目完整指南1. 环境准备2. 创建

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

MyBatis分页查询实战案例完整流程

《MyBatis分页查询实战案例完整流程》MyBatis是一个强大的Java持久层框架,支持自定义SQL和高级映射,本案例以员工工资信息管理为例,详细讲解如何在IDEA中使用MyBatis结合Page... 目录1. MyBATis框架简介2. 分页查询原理与应用场景2.1 分页查询的基本原理2.1.1 分

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

mybatis映射器配置小结

《mybatis映射器配置小结》本文详解MyBatis映射器配置,重点讲解字段映射的三种解决方案(别名、自动驼峰映射、resultMap),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定... 目录select中字段的映射问题使用SQL语句中的别名功能使用mapUnderscoreToCame

Linux下MySQL数据库定时备份脚本与Crontab配置教学

《Linux下MySQL数据库定时备份脚本与Crontab配置教学》在生产环境中,数据库是核心资产之一,定期备份数据库可以有效防止意外数据丢失,本文将分享一份MySQL定时备份脚本,并讲解如何通过cr... 目录备份脚本详解脚本功能说明授权与可执行权限使用 Crontab 定时执行编辑 Crontab添加定

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Java实现将HTML文件与字符串转换为图片

《Java实现将HTML文件与字符串转换为图片》在Java开发中,我们经常会遇到将HTML内容转换为图片的需求,本文小编就来和大家详细讲讲如何使用FreeSpire.DocforJava库来实现这一功... 目录前言核心实现:html 转图片完整代码场景 1:转换本地 HTML 文件为图片场景 2:转换 H

Java使用jar命令配置服务器端口的完整指南

《Java使用jar命令配置服务器端口的完整指南》本文将详细介绍如何使用java-jar命令启动应用,并重点讲解如何配置服务器端口,同时提供一个实用的Web工具来简化这一过程,希望对大家有所帮助... 目录1. Java Jar文件简介1.1 什么是Jar文件1.2 创建可执行Jar文件2. 使用java

SpringBoot 多环境开发实战(从配置、管理与控制)

《SpringBoot多环境开发实战(从配置、管理与控制)》本文详解SpringBoot多环境配置,涵盖单文件YAML、多文件模式、MavenProfile分组及激活策略,通过优先级控制灵活切换环境... 目录一、多环境开发基础(单文件 YAML 版)(一)配置原理与优势(二)实操示例二、多环境开发多文件版