浅谈Dead reckoning实现原理以及常用算法

2023-10-27 19:50

本文主要是介绍浅谈Dead reckoning实现原理以及常用算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

0. 简介

航位推算是一个很常见的定位方法。在知道当前时刻的位置,然后通过imu等传感器去估计下一个时刻的位置。在自动驾驶车辆定位的时候,GPS提供10Hz的定位信息。这每个GPS信息来临的0.1s的间隔里面,车辆位置也会移动很多。那么这个时候就需要航位推算来判断车辆到底移动了多少距离,在哪个地方。所以,航位推算是自动驾驶车辆最基本的,也是必须的一种算法之一。比如推算车辆在隧道中的位置。


1. 从简至繁的几种航迹推算方法

1.1 陀螺仪yaw角 + 轮速

实现方式:松耦合,yaw角确定2D方向,轮速确定长度,即可递推航迹

待标定量:陀螺仪Z方向零偏,单位轮齿脉冲长度

优点:实现最简单

缺点:仅适用于2D平面DR,浪费了IMU的大部分数据


1.2 陀螺仪rpy角 + 轮速

实现方式:松耦合,rpy确定3D方向,轮速确定长度,递推姿态,参考[1]的实现

待标定量:陀螺仪X、Y、Z方向零偏,单位轮齿脉冲长度

优点:实现简单,在三维空间中进行DR

缺点:浪费了加计的数据


1.3 ESKF(陀螺仪rpy预测,加计观测) + 轮速

实现方式:松耦合,采用ESKF得到更好的姿态(rpy作为预测,加计作为观测【零加速度模型,只感受重力】),轮速确定长度,递推姿态,参考[2]的实现

待标定量:陀螺仪X、Y、Z方向零偏、加速度计X、Y、Z方向零偏,单位轮齿脉冲长度

优点:在三维空间中进行DR,在车辆静止或者平缓运动时,可以得到更好的旋转

缺点:实现稍微复杂,当车辆做加、减速运动时,不满足零加速度模型,观测模型失效


1.4 ESKF (陀螺仪rpy+加计预测,轮速观测)

实现方式:紧耦合,采用IMU运动学模型预测轨迹,轮速作为对于车辆X方向上速度的观测,对预测的轨迹进行修正,参考[3]的实现

待标定量:陀螺仪X、Y、Z方向零偏及零偏随机游走、加速度计X、Y、Z方向零偏及零偏随机游走、单位轮齿脉冲长度

优点:融合了所有IMU和轮速的所有信息,在标定准确的情况下,可以得到最接近真值的轨迹

缺点:实现最复杂,待标定量最多,调参最困难

2. 基于航位推算的机器们

移动机器人如果能够在无控制环境下进行导航而无需导航设备,就可以被称为自主的。另外,移动机器人也可以依赖导航设备,在相对受控的空间内按照预定的导航路线行驶。在这种情况下,它们被称为自主导航车辆(AGV)。对于自动驾驶汽车也可以做出同样的区分。为了开发真正“自主”的车辆,定位是导航的一个重要要素,特别是对于规划和控制而言。为此,我们认为强大的航位推算(DR)能力是必不可少的。实际上,虽然存在使用外部感知传感器的定位方法[5],[6],[14],但它们通常只能提供低频和间歇性的定位。



而针对行人,IPDR系统的主要关注点是如何抑制和减少惯性传感器引起的漂移和偏差误差。充分考虑和利用人体运动特征和活动环境的外部约束,并深化传感器输出信号的深层信息是误差控制的关键。身体是人类运动的创造者。因此,首先应考虑和分析身体自身的约束。在人体运动过程中,身体不同部位的运动特征是不同的。例如,在下肢运动中,脚底周期性接触地面,速度被认为是零,腿部可以被视为两个周期性倒立摆模型。更精确的人体运动信息将为误差修正提供更可靠的先验知识。例如,在脚部安装的IPDR系统中,通过测量每步的支撑相期间获得零速率和零角速度观测,然后进行零速度更新(ZUPT)和零角速度更新(ZARU),以在短时间内限制误差。

…详情请参照古月居

这篇关于浅谈Dead reckoning实现原理以及常用算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/287979

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依