分析Airbnb新用户订房地点

2023-10-27 18:59

本文主要是介绍分析Airbnb新用户订房地点,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

首先先导入包

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import sklearn as sk
import datetime
import os
import seaborn as sns

-----------------------------------------------------------------------------------

其次导入数据

train = pd.read_csv('/Users/qinpeng/Documents/airbnb/train_users_2.csv',sep=',')
test = pd.read_csv('/Users/qinpeng/Documents/airbnb/test_users.csv',sep=',')

-----------------------------------------------------------------------------------

观测数据

train.head()
train.shape
test.shape
print(train.shape)
print(test.shape)
train.info()
test.info()
(213451, 16)
(62096, 15)
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 213451 entries, 0 to 213450
Data columns (total 16 columns):
id                         213451 non-null object
date_account_created       213451 non-null object
timestamp_first_active     213451 non-null int64
date_first_booking         88908 non-null object
gender                     213451 non-null object
age                        125461 non-null float64
signup_method              213451 non-null object
signup_flow                213451 non-null int64
language                   213451 non-null object
affiliate_channel          213451 non-null object
affiliate_provider         213451 non-null object
first_affiliate_tracked    207386 non-null object
signup_app                 213451 non-null object
first_device_type          213451 non-null object
first_browser              213451 non-null object
country_destination        213451 non-null object
dtypes: float64(1), int64(2), object(13)
memory usage: 26.1+ MB
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 62096 entries, 0 to 62095
Data columns (total 15 columns):
id                         62096 non-null object
date_account_created       62096 non-null object
timestamp_first_active     62096 non-null int64
date_first_booking         0 non-null float64
gender                     62096 non-null object
age                        33220 non-null float64
signup_method              62096 non-null object
signup_flow                62096 non-null int64
language                   62096 non-null object
affiliate_channel          62096 non-null object
affiliate_provider         62096 non-null object
first_affiliate_tracked    62076 non-null object
signup_app                 62096 non-null object
first_device_type          62096 non-null object
first_browser              62096 non-null object
dtypes: float64(2), int64(2), object(11)
memory usage: 7.1+ MB

可以看出train共有观测213451条,16个变量,test共有62096条,15个变量

可以看到里面缺失的列的数量

date_first_booking         0 non-null float64

为什么全是空置,因为需要预测住房地点,所以此列为全空

-----------------------------------------------------------------------------------


-----------------------------------------------------------------------------------

train_features = train.columns
test_features = test.columns
np.setdiff1d(train_features,test_features)
dac_train = train.date_account_created.value_counts()
dac_test = test.date_account_created.value_counts()
print('training dataset:\n')
print(dac_train.describe())
print('\n' + '***' * 15 + '\n')
print('test dataset:\n')
print(dac_test.describe())
print('training dateset:')
print(dac_train.head())
print(dac_train.tail())
training dataset:count    1634.000000
mean      130.630967
std       139.327895
min         1.000000
25%        15.000000
50%        79.000000
75%       201.000000
max       674.000000
Name: date_account_created, dtype: float64*********************************************test dataset:count      92.000000
mean      674.956522
std       122.568116
min       401.000000
25%       606.750000
50%       662.000000
75%       739.000000
max      1105.000000
Name: date_account_created, dtype: float64
training dateset:
2014-05-13    674
2014-06-24    670
2014-06-25    636
2014-05-20    632
2014-05-14    622
Name: date_account_created, dtype: int64
2010-03-09    1
2010-04-24    1
2010-01-23    1
2010-02-14    1
2010-04-11    1
Name: date_account_created, dtype: int64

上面图说明train注册的不同天数有1634个不同的天数,test有92个不同的天数,train最小值是1,最大值674

trainng中2014-5-13有674个

-----------------------------------------------------------------------------------

数据集train显示2010-1-1到2014-6-30的数据

数据集test显示2014-6-30到2014-9-30的数据

dac_train_date = pd.to_datetime(dac_train.index)
print('the start date of training dataset is :{}'.format(dac_train_date.min()))
print('the end date of training dataset is :{}'.format(dac_train_date.max()))dac_test_date = pd.to_datetime(dac_test.index)
print('the start date of test dataset is :{}'.format(dac_test_date.min()))
print('the end date of test dataset is :{}'.format(dac_test_date.max()))
the start date of training dataset is :2010-01-01 00:00:00
the end date of training dataset is :2014-06-30 00:00:00
the start date of test dataset is :2014-07-01 00:00:00
the end date of test dataset is :2014-09-30 00:00:00

-----------------------------------------------------------------------------------

dac_train_day = dac_train_date - dac_train_date.min()
dac_test_day = dac_test_date - dac_test_date.min()
print(dac_train_day)
print(dac_test_day)
TimedeltaIndex(['1593 days', '1635 days', '1636 days', '1600 days','1594 days', '1614 days', '1601 days', '1627 days','1622 days', '1641 days',...'18 days',   '27 days',    '2 days',    '0 days','1 days',   '67 days',  '113 days',   '22 days','44 days',  '100 days'],dtype='timedelta64[ns]', length=1634, freq=None)
TimedeltaIndex(['22 days', '21 days', '16 days', '23 days', '17 days','20 days', '57 days', '56 days', '28 days', '36 days','29 days', '42 days', '41 days', '58 days', '35 days','27 days', '15 days', '24 days', '77 days', '30 days','44 days', '49 days', '71 days', '37 days', '19 days','38 days', '43 days', '64 days', '34 days', '55 days','85 days', '18 days', '26 days', '84 days', '91 days','31 days', '63 days', '90 days', '51 days', '25 days','69 days', '65 days', '39 days', '48 days', '52 days','7 days', '46 days', '14 days', '50 days', '70 days','83 days', '79 days', '45 days', '60 days',  '1 days','76 days', '72 days', '33 days', '13 days',  '2 days','6 days', '59 days', '61 days', '66 days', '78 days','53 days',  '8 days', '47 days',  '9 days', '54 days','80 days', '40 days', '73 days',  '0 days', '74 days','62 days', '32 days', '68 days', '88 days', '67 days','82 days', '86 days', '75 days', '81 days', '87 days','10 days', '89 days',  '5 days', '11 days',  '3 days','4 days', '12 days'],dtype='timedelta64[ns]', freq=None)
注册时间和使用时间的时间间隔

-----------------------------------------------------------------------------------

plt.scatter(dac_train_day.days,dac_train.values,color = 'r',label= 'train dataset')
plt.scatter(dac_test_day.days,dac_test.values,color = 'b',label = 'test dataset')plt.title('Accounts created vs day')
plt.xlabel('Days')
plt.ylabel('Accounts created')
plt.legend(loc = 'upper left')
<matplotlib.legend.Legend at 0x1a0b68db38>
会发现注册人数持续上升

-----------------------------------------------------------------------------------

tra_train_df = train.timestamp_first_active.astype(str).apply(lambda x:datetime.datetime(int(x[:4]),int(x[4:6]),int(x[6:8]),int(x[8:10]),int(x[10:12]),int(x[12:])))
tra_test_df = test.timestamp_first_active.astype(str).apply(lambda x:datetime.datetime(int(x[:4]),int(x[4:6]),int(x[6:8]),int(x[8:10]),int(x[10:12]),int(x[12:])))
20090319043255把这样的时间转换成标准的时间格式2009-03-19 04:32:55

-----------------------------------------------------------------------------------

print(train[train.age<15].age.shape)
print(train[train.age>80].age.shape)
print(test[test.age<15].age.shape)
print(test[test.age>80].age.shape)
(57,)
(2771,)
(2,)
(417,)

可以看到有train里面有57个小于15岁的,大于80岁的有2771个,test小于15岁的有2个,大于80岁的有417个,属于极值吧

-----------------------------------------------------------------------------------

plt.scatter(train.age.value_counts().index.values,train.age.value_counts().values,color='r',label='training')
plt.scatter(test.age.value_counts().index.values,test.age.value_counts().values,color='b',label='test')plt.title('Counts at different ages')
plt.xlabel('Age')
plt.ylabel('Counts od id')
plt.legend(loc = 'upper right',fontsize = 15)
<matplotlib.legend.Legend at 0x1a0bc15f98>
从图中看出大部分都在0-100多岁之间,有一小部分在2000岁左右,最长寿老人好像117岁
-----------------------------------------------------------------------------------

age_train = [train[train.age.isnull()].age.shape[0],train.query('age<15').age.shape[0],train.query('age>=15 & age<=80').age.shape[0],train.query('age>80').age.shape[0]]age_test = [test[test.age.isnull()].age.shape[0],test.query('age<15').age.shape[0],test.query('age>=15 & age<=80').age.shape[0],test.query('age>80').age.shape[0]]
columns = ['Null','age<15','age','age>80']
fig, (ax1,ax2) = plt.subplots(1,2,sharex=True,sharey=True,figsize=(10,5))sns.barplot(columns,age_train,ax=ax1)
sns.barplot(columns,age_test,ax=ax2)ax1.set_title('training dataset')
ax2.set_title('test dataset')
ax1.set_ylabel('counts')
Text(0,0.5,'counts')

我用柱状图把年龄分成几段,空值分一段,小于15岁分成一段,大于80岁分成一段,绿色属于正常值范围,蓝色属于空值,红色属于千年老妖

-----------------------------------------------------------------------------------

ohe_feats = ['gender','signup_method','signup_flow','language','affiliate_channel','affiliate_provider','first_affiliate_tracked','signup_app','first_device_type','first_browser']
def feature_barplot(feature, df_train = train, df_test=test, figsize=(10,5),rot=90,saveimg = False):feat_train = df_train[feature].value_counts()feat_test = df_test[feature].value_counts()fig_feature, (axis1,axis2) = plt.subplots(1,2,sharex=True,sharey=True,figsize=figsize)sns.barplot(feat_train.index.values, feat_train.values, ax= axis1)sns.barplot(feat_test.index.values, feat_test.values, ax= axis2)axis1.set_xticklabels(axis1.xaxis.get_majorticklabels(), rotation = rot)axis2.set_xticklabels(axis1.xaxis.get_majorticklabels(), rotation = rot)axis1.set_title(feature + ' of training dataset')axis2.set_title(feature + ' of test dataset')axis1.set_ylabel('Counts')plt.tight_layout()if saveimg ==True:figname = feature + '.png'fig_feature.savefig(figname, dpi = 75)
train.gender.value_counts()

性别区分

-unknown-    95688
FEMALE       63041
MALE         54440
OTHER          282
Name: gender, dtype: int64
可以看train到空值有9万多,男的有5万多,女士6万多
-unknown-    33792
FEMALE       14483
MALE         13769
OTHER           52
Name: gender, dtype: int64

可以看test到空值有3万多,男的有1.3万多,女士1.4万多

feature_barplot('gender',saveimg= True)

-----------------------------------------------------------------------------------

feature_barplot('signup_method')

注册方式,最多的是basic,其次是facebook,最后是谷歌

-----------------------------------------------------------------------------------

for feat in ohe_feats:feature_barplot(feature=feat)

男女人数分布图


注册方式分布图


从那个页面进来注册的,0是主页注册页面


英语第一,因为Airbnb是美国公司,所以第一吧,中文第二


从什么地方引流过来的


付费推广的渠道



注册最多的是浏览器


台式机mac最多是最多,可能美国台式mac比较多吧,毕竟是发达国家嘛


Airbnb使用时候的浏览器

-----------------------------------------------------------------------------------

通过上面可以发现,年龄的极值需要处理,性别空值需要处理

下面开始查看session数据

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import sklearn as sk
import datetime
from datetime import date
import seaborn as sns
from sklearn.preprocessing import *
from sklearn.preprocessing import LabelEncoder #标准化标签,将标签值统一转换成range(标签值个数-1)范围内
from sklearn.cross_validation import StratifiedShuffleSplit#数据集划分
df_sessions.head()

	action	action_type	action_detail	device_type	secs_elapsed	id
0	lookup	NaN	NaN	Windows Desktop	319.0	d1mm9tcy42
1	search_results	click	view_search_results	Windows Desktop	67753.0	d1mm9tcy42
2	lookup	NaN	NaN	Windows Desktop	301.0	d1mm9tcy42
3	search_results	click	view_search_results	Windows Desktop	22141.0	d1mm9tcy42
4	lookup	NaN	NaN	Windows Desktop	435.0	d1mm9tcy42

可以看到id有重复的,说明一个用户有多次操作

df_sessions.shape
(10567737, 6)

有多少用户呢

dgr_sess = df_sessions.groupby(['id'])
共有135483用户制造出了1000多万的数据

查看session有多少空值

df_sessions.isnull().sum()
action             79626
action_type      1126204
action_detail    1126204
device_type            0
secs_elapsed      136031
id                 34496
dtype: int64

对空置进行处理,先对空置进行NAN填充,因为有些空值是Nan,none等,所以对空值进行统一填充

print('Working on Session data...')df_sessions.action = df_sessions.action.fillna('NAN')
df_sessions.action_type = df_sessions.action_type.fillna('NAN')
df_sessions.action_detail = df_sessions.action_detail.fillna('NAN')
df_sessions.device_type = df_sessions.device_type.fillna('NAN')

-----------------------------------------------------------------------------------

act_freq = 100
act = dict(zip(df_sessions.action.value_counts().index,df_sessions.action.value_counts().values))
df_sessions.action = df_sessions.action.apply(lambda x: 'OTHER' if act[x] < act_freq else x)
f_act = df_sessions.action.value_counts().argsort()
f_act_detail = df_sessions.action_detail.value_counts().argsort() #对action_detail频繁进行排序
f_act_type = df_sessions.action_type.value_counts().argsort()    #对action_type频繁进行排序
f_dev_type = df_sessions.device_type.value_counts().argsort()
print(f_act.shape)
print(f_act_detail.shape)
print(f_act_type.shape)
print(f_dev_type.shape)

因为有不频繁的值,所以把小于100的进行OTHER归类,归类特别细致的话会对模型没有朴实性

df_sessions.action.value_counts()

-----------------------------------------------------------------------------------

samples = []
cont = 0
In = len(dgr_sess)for g in dgr_sess:if cont%1000 ==0:print('%s from %s'%(cont,In))  #提示打印多少行数据了gr = g[1]l = []l.append(g[0])l.append(len(gr))sev = gr.secs_elapsed.fillna(0).valuesc_act = [0] * len(f_act)for i,v in enumerate(gr.action.values):c_act[f_act[v]] += 1_, c_act_uqc = np.unique(gr.action.values,return_counts=True)c_act += [len(c_act_uqc), np.mean(c_act_uqc), np.std(c_act_uqc)]l = l + c_actc_act_detail = [0] * len(f_act_detail)for i,v in enumerate(gr.action_detail.values):c_act_detail[f_act_detail[v]] += 1_, c_act_det_uqc = np.unique(gr.action_detail.values,return_counts=True)c_act_detail += [len(c_act_det_uqc), np.mean(c_act_det_uqc), np.std(c_act_det_uqc)]l = l + c_act_detaill_act_type = [0] * len(f_act_type)c_act_type = [0] * len(f_act_type)for i,v in enumerate(gr.action_type.values):l_act_type[f_act_type[v]] += sev[i]c_act_type[f_act_type[v]] += 1l_act_type = np.log(1 + np.array(l_act_type)).tolist()_, c_act_type_uqc = np.unique(gr.action_type.values,return_counts=True)c_act_type += [len(c_act_type_uqc), np.mean(c_act_type_uqc), np.std(c_act_type_uqc)]l = l + c_act_type + l_act_typec_dev_type = [0] * len(f_dev_type)for i,v in enumerate(gr.device_type.values):c_dev_type[f_dev_type[v]] += 1c_dev_type.append(len(np.unique(gr.device_type.values)))_, c_dev_type_uqc = np.unique(gr.device_type.values,return_counts=True)c_dev_type += [len(c_dev_type_uqc), np.mean(c_dev_type_uqc),np.std(c_dev_type_uqc)]l = l + c_dev_typel_secs = [0] * 5l_log = [0] * 15if len(sev) > 0:l_secs[0] = np.log(1 + np.sum(sev))l_secs[1] = np.log(1 + np.mean(sev))l_secs[2] = np.log(1 + np.std(sev))l_secs[3] = np.log(1 + np.median(sev))l_secs[4] = l_secs[0] / float(l[1])log_sev = np.log(1+sev).astype(int)l_log = np.bincount(log_sev,minlength=15).tolist()l = l + l_secs + l_logsamples.append(l)cont += 1
共有135483用户承载出了1000多万的数据,所以遍历数据,以人为单位,每个人有多少个action,f_act列出所有的action,c_act求出每个人有多少个action,把这个人action这一组里面所有不同的action列出来
samples = np.array(samples)
samp_ar = samples[:,1:].astype(np.float16)
samp_id = samples[:,0]col_names = []
for i in range(len(samples[0])-1):col_names.append('c_' + str(i))
df_agg_sess = pd.DataFrame(samp_ar, columns=col_names)
df_agg_sess['id'] = samp_id
df_agg_sess.index = df_agg_sess.id

df_agg_sess.shape
(135483, 335)

现在有13万数据,335列

-----------------------------------------------------------------------------------

导入train和test数据集

train = pd.read_csv('/Users/qinpeng/Documents/airbnb/train_users_2.csv')
test = pd.read_csv('/Users/qinpeng/Documents/airbnb/test_users.csv')
train_row = train.shape[0]labels = train['country_destination'].valuesid_test = test['id']train.drop(['country_destination','date_first_booking'], axis = 1,inplace=True)
test.drop(['date_first_booking'], axis=1,inplace=True)

删除掉3行数据

df = pd.concat([train,test],axis = 0,ignore_index=True)
df.shape

把train和test两个数据进行拼接

-----------------------------------------------------------------------------------

tfa = df.timestamp_first_active.astype(str).apply(lambda x:datetime.datetime(int(x[:4]),int(x[4:6]),int(x[6:8]),int(x[8:10]),int(x[10:12]),int(x[12:])))
df['tfa_year'] = np.array([x.year for x in tfa])
df['tfa_month'] = np.array([x.month for x in tfa])
df['tfa_day'] = np.array([x.day for x in tfa])
df['tfa_wd'] = np.array([x.isoweekday() for x in tfa])#isoweekday 分成周几
df_tfa_wd = pd.get_dummies(df.tfa_wd,prefix='tfa_wd') # get_dummies is 'one hot encoding'
df = pd.concat((df,df_tfa_wd),axis = 1)
df.drop(['tfa_wd'],axis = 1,inplace=True)
df.head()

处理时间,把时间detetime标准化,提取出年月日,根据年月日分出是周几,进行one hot encoding编码

Y = 2000 #北半球,确定月份的四季
seasons = [(0, (date(Y, 1, 1), date(Y, 3, 20))),   #winter(1, (date(Y, 3, 21), date(Y, 6, 20))),  #spring(2, (date(Y, 6, 21), date(Y, 9, 22))),  #summer(3, (date(Y, 9, 23), date(Y, 12, 20))), #autumn(0, (date(Y, 12, 21), date(Y, 12, 31))),#winter]

把一年四季的四个季节进行划分

df['tfa_season'] = np.array([get_season(x) for x in tfa])
df_tfa_season = pd.get_dummies(df.tfa_season, prefix = 'tfa_season')
df = pd.concat((df,df_tfa_season),axis = 1)
df.drop(['tfa_season'],axis = 1,inplace=True)
df.head()

def get_season(dt):dt = dt.date()dt = dt.replace(year=Y)return next(season for season, (start, end) in seasons if start <= dt <=end)

写一个划分一年四季的函数,对这个四个季节进行one hot encoding编码

dac = pd.to_datetime(df.date_account_created)
df['dac_year'] = np.array([x.year for x in dac])
df['dac_month'] = np.array([x.month for x in dac])
df['dac_day'] = np.array([x.day for x in dac])
df['dac_wd'] = np.array([x.isoweekday() for x in dac])
df_dac_wd = pd.get_dummies(df.dac_wd, prefix='dac_wd')
df = pd.concat((df,df_dac_wd),axis = 1)
df.drop(['dac_wd'],axis = 1,inplace=True)

把df时间进行拆分,分析出是周几,再进行one hot encoding编码

df['dac_season'] = np.array([get_season(x) for x in dac])
df_dac_season = pd.get_dummies(df.dac_season, prefix='dac_season')
df = pd.concat((df,df_dac_season),axis = 1)
df.drop(['dac_season'],axis = 1,inplace=True)
df.head()

-----------------------------------------------------------------------------------

dt_span = dac.subtract(tfa).dt.days
plt.scatter(dt_span.value_counts().index.values,dt_span.value_counts().values)
<matplotlib.collections.PathCollection at 0x1a195697b8>

可以看出第一次注册时间和第一次激活时间的时间差

写一个函数,把小于-1天的为一天,小于30天大于-1天的为一个月,大于30天小于365天的为一年

为什么是-1可能是服务器更新把第一次注册时间放到下一天了,所以看到-1最频繁

对及其不频繁的进行归类

def get_span(dt):if dt == -1:return 'OneDay'elif (dt<30) & (dt>-1):return 'OneMonth'elif (dt>=30) & (dt<=365):return 'OneYear'else:return 'Other'
df['dt_span'] = np.array([get_span(x) for x in dt_span])
df_dt_span = pd.get_dummies(df.dt_span,prefix='dt_span')
df = pd.concat((df,df_dt_span),axis = 1)
df.drop(['dt_span'],axis = 1,inplace=True)
df.head()
把一天,一个月,其它,进行one hot encoding编码
-----------------------------------------------------------------------------------
df.drop(['date_account_created','timestamp_first_active'],axis = 1, inplace=True)

删除两个时间列,分别是注册时间和激活时间


下面处理年龄

av = df.age.values
av = np.where(np.logical_and(av<2000,av>1900),2018-av,av)
df['age'] = av
age = df.age
age.fillna(-1,inplace=True)
div = 15
def get_age(age):if age < 0:return 'NA'elif (age < div):return divelif (age <= div*2):return div*2elif (age <= div*3):return div*3elif (age <= div*4):return div*4elif (age <=div*5):return div*5elif (age <=110):return div*6else:return 'Unphysical'

对年龄段进行划分,我推理把小于2000大于1900岁的用户,我用2018(今年)减去用户的岁数,得到他现在的年龄,把一部分极值信息变成有用的信息

df['age'] = np.array([get_age(x) for x in age])
df_age = pd.get_dummies(df.age,prefix='age')
df_age.head()

对年龄段进行one hot encoding编码

df = pd.concat((df,df_age),axis = 1)
df.drop(['age'],axis = 1,inplace=True)
df.head()

把age列删除

-----------------------------------------------------------------------------------

处理其它列

feat_toOHE = ['gender','signup_method','signup_flow','language','affiliate_channel','affiliate_provider','first_affiliate_tracked','signup_app','first_device_type','first_browser']
for f in feat_toOHE:df_ohe = pd.get_dummies(df[f],prefix=f,dummy_na=True)df.drop([f],axis = 1,inplace=True)df = pd.concat((df,df_ohe),axis = 1)

把其它列进行one hot encoding编码

df.shape
(275547, 208)

现在有208列的特征

df_all = pd.merge(df,df_agg_sess,how='left')
df_all = df_all.drop(['id'],axis = 1)
af_all = df_all.fillna(-2)df_all['all_null'] = np.array([sum(r<0) for r in df_all.values])

把df和df_agg_sess表进行合并

删除id列,对空值用-2填充

添加一个all_null列,小于-2的都是为空值,计算空置的数量

-----------------------------------------------------------------------------------

Xtrain = df_all.iloc[:train_row,:]
Xtest = df_all.iloc[train_row:,:]le = LabelEncoder()
le.fit(labels)
ytrain = le.transform(labels)
print(train.shape[0] == Xtrain.shape[0])
print(test.shape[0] == Xtest.shape[0])
Xtrain.to_csv('/Users/qinpeng/Documents/airbnb/Airbnb_Xtrain_v2.csv')
Xtest.to_csv('/Users/qinpeng/Documents/airbnb/Airbnb_Xtest_v2.csv')
labels.tofile('/Users/qinpeng/Documents/airbnb/Airbnb_Ytrain_v2.csv',sep='\n',format='%s')
保存处理后的数据集








这篇关于分析Airbnb新用户订房地点的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/287704

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

最新Spring Security的基于内存用户认证方式

《最新SpringSecurity的基于内存用户认证方式》本文讲解SpringSecurity内存认证配置,适用于开发、测试等场景,通过代码创建用户及权限管理,支持密码加密,虽简单但不持久化,生产环... 目录1. 前言2. 因何选择内存认证?3. 基础配置实战❶ 创建Spring Security配置文件

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方

SpringBoot中六种批量更新Mysql的方式效率对比分析

《SpringBoot中六种批量更新Mysql的方式效率对比分析》文章比较了MySQL大数据量批量更新的多种方法,指出REPLACEINTO和ONDUPLICATEKEY效率最高但存在数据风险,MyB... 目录效率比较测试结构数据库初始化测试数据批量修改方案第一种 for第二种 case when第三种

解决1093 - You can‘t specify target table报错问题及原因分析

《解决1093-Youcan‘tspecifytargettable报错问题及原因分析》MySQL1093错误因UPDATE/DELETE语句的FROM子句直接引用目标表或嵌套子查询导致,... 目录报js错原因分析具体原因解决办法方法一:使用临时表方法二:使用JOIN方法三:使用EXISTS示例总结报错原