SENet 学习

2023-10-27 14:52
文章标签 学习 senet

本文主要是介绍SENet 学习,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ILSVRC

是一个比赛,全称是ImageNet Large-Scale Visual Recognition Challenge,平常说的ImageNet比赛指的是这个比赛。
使用的数据集是ImageNet数据集的一个子集,一般说的ImageNet(数据集)实际上指的是ImageNet的这个子集,总共有1000类,每类大约有1000张图像。完整的 ImageNet,有大约1.2million的训练集,5万验证集,15万测试集。ILSVRC从2010年开始举办,到2017年是最后一届。ILSVRC-2012的数据集被用在2012-2014年的挑战赛中(VGG论文中提到)。ILSVRC-2010是唯一提供了test set的一年。
ImageNet可能是指整个数据集(15 million),也可能指比赛用的那个子集(1000类,大约每类1000张),也可能指ILSVRC这个比赛。需要根据语境自行判断。
12-17年期间在ImageNet比赛上提出了一些经典网络,比如AlexNet,ZFNet,VGG, GoogLeNet, ResNet,DenseNet,SENet。我之前的博文都有相应模型及其变体的介绍。

在这里插入图片描述

  • 13 年 ZFNet
  • 16 年 DenseNet

SENET简介

提出背景:卷积核通常被看做是在局部感受野上,在空间上和通道维度上同时对信息进行相乘求和的计算。现有网络很多都是主要在空间维度方面来进行特征的融合(如Inception的多尺度)。
通道维度的注意力机制:在常规的卷积操作中,输入信息的每个通道进行计算后的结果会进行求和输出,这时每个通道的重要程度是相同的。而通道维度的注意力机制,则通过学习的方式来自动获取到每个特征通道的重要程度(即feature map层的权重),以增强有用的通
道特征,抑制不重要的通道特征。
说起卷积对通道信息的处理,有人或许会想到逐点卷积,即kernel大小为1X1的常规卷积。与1X1卷积相比,SENet是为每个channel重新分配一个权重(即重要程度)。而1X1卷积只是在做channel的融合计算,顺带进行升维和降维,也就是说每个channel在计算时的重要程度是相同的。

SENet 模块

在这里插入图片描述

X经过一系列传统卷积得到U,对U先做一个Global Average Pooling,输出的1x1xC数据(即,上图梯形短边的白色向量),这个特征向量一定程度上可以代表之前的输入信息,论文中称之为Squeeze操作。
再经过两个全连接来学习通道间的重要性,用sigmoid限制到[0,1]的范围,这时得到的输出可以看作每个通道重要程度的权重(即上图梯形短边的彩色向量),论文中称之为Excitation操作。
最后,把这个1x1xC的权重乘到U的C个通道上,这时就根据权重对U的channles进行了重要程度的重新分配。

效果

  • 与SE模块可以嵌入到现在几乎所有的网络结构中,而且都可以得到不错的效果提升,用过的都说好。
  • 在大部分模型中嵌入SENet要比非SENet的准确率更高出1%左右,而计算复杂度上只是略微有提升,具体如下图所示。而且SE块会使训练和收敛更容易。CPU推断时间的基准测试:224×224的输入图 像,ResNet-50 164ms, SE-ResNet-50 167ms。在这里插入图片描述

代码

class SqueezeExcite(nn.Module):def __init__(self,input_c: int,   # block input channelexpand_c: int,  # block expand channelse_ratio: float = 0.25):super(SqueezeExcite, self).__init__()squeeze_c = int(input_c * se_ratio)self.conv_reduce = nn.Conv2d(expand_c, squeeze_c, 1)self.act1 = nn.SiLU()  # alias Swishself.conv_expand = nn.Conv2d(squeeze_c, expand_c, 1)self.act2 = nn.Sigmoid()def forward(self, x: Tensor):scale = x.mean((2, 3), keepdim=True)scale = self.conv_reduce(scale)scale = self.act1(scale)scale = self.conv_expand(scale)scale = self.act2(scale)return scale * x

总结

  • SE block 可以理解为 channel维度上的注意力机制(即重分配通道上 feature map对后续计算的权重),与Stochastic Depth Net一样,本论文的贡献更像一种思想,而非模型。在之后的模型中,会经常看见SE block 的身影。例如,SKNet,MobileNet等等。

这篇关于SENet 学习的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/286407

相关文章

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;