数值线性代数Cholesky分解法解线性方程组MATLAB实现

本文主要是介绍数值线性代数Cholesky分解法解线性方程组MATLAB实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

算法思想

如何利用电子计算机来快速、有效地求解线性方程组是数值线性代数研究的核心问题,而且也是目前人在继续研究的重大课题之一。
Cholesky分解法又叫做平方根法,是求解对称正定线性方程组最常用的方法之一。A是一个对称正定的矩阵,则存在一个对角元均为正数的下三角阵L,使得A=LL’,称为Cholesky分解,而后我们可以由下面三步求解:
(1)计算A的Cholesky分解:A=LL’;
(2)求解Ly=b得y;
(3)求解L’x=y得x。

矩阵创建

function [A,b]=creatMaxtrix(n)T=zeros(n-1,n-1);for i=1:n-1T(i,i)=2;endfor i=1:n-2T(i,i+1)=-1;T(i+1,i)=-1;endI=eye(n-1,n-1);k=(n-1)^2;A=zeros(k,k);b=ones(k,1);j=1;for i=1:n-1A(j:j+n-2,j:j+n-2)=T+2*I;j=j+n-1;endj=1;for i=1:n-2A(j:j+n-2,j+n-1:j+2*n-3)=-I;A(j+n-1:j+2*n-3,j:j+n-2)=-I;j=j+n-1;end
end

该矩阵是一个(n-1)2 阶的矩阵,其具有这样几个特点,
(1)A是块三对角阵,共有五条对角线上有非零元素;
(2)A是不可约对角占优的;
(3)A是对称正定的,而且是稀疏的。
矩阵的形式如下
在这里插入图片描述
可通过spy来观察矩阵的分布,一个n=11时的矩阵分布情况如下

在这里插入图片描述

Cholesky分解

function []=Cholesky(n)
[A,b]=creatMaxtrix(n);
[n,~]=size(b);
x=A\b;
%Cholesky分解
for k=1:nA(k,k)=sqrt(A(k,k));A(k+1:n,k)=A(k+1:n,k)/A(k,k);for j=k+1:nA(j:n,j)=A(j:n,j)-A(j:n,k)*A(j,k);end
end
%计算时将y,x存在b的存储单元里
%解下三角形方程组:前代法
L=tril(A,0);
for j=1:n-1b(j)=b(j)/L(j,j);b(j+1:n)=b(j+1:n)-b(j)*L(j+1:n,j);
end
b(n)=b(n)/L(n,n);
%解上三角形方程组:回代法
U=L';
for j=n:-1:2b(j)=b(j)/U(j,j);b(1:j-1)=b(1:j-1)-b(j)*U(1:j-1,j);
end
b(1)=b(1)/U(1,1);
%用二范数来衡量误差
norm(x-b)

总结

运行结果如下

>> Cholesky(11)
ans =1.9304e-14

与Gauss消去法对比,函数中只有对于矩阵的分解部分变动较大。运行结果表明算法的准确性,但是像前一篇文章中所说,由于实际问题的复杂,往往需要考虑更多。

这篇关于数值线性代数Cholesky分解法解线性方程组MATLAB实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:https://blog.csdn.net/weixin_42291223/article/details/103445588
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/286341

相关文章

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控

Linux在线解压jar包的实现方式

《Linux在线解压jar包的实现方式》:本文主要介绍Linux在线解压jar包的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux在线解压jar包解压 jar包的步骤总结Linux在线解压jar包在 Centos 中解压 jar 包可以使用 u

c++ 类成员变量默认初始值的实现

《c++类成员变量默认初始值的实现》本文主要介绍了c++类成员变量默认初始值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录C++类成员变量初始化c++类的变量的初始化在C++中,如果使用类成员变量时未给定其初始值,那么它将被

Qt使用QSqlDatabase连接MySQL实现增删改查功能

《Qt使用QSqlDatabase连接MySQL实现增删改查功能》这篇文章主要为大家详细介绍了Qt如何使用QSqlDatabase连接MySQL实现增删改查功能,文中的示例代码讲解详细,感兴趣的小伙伴... 目录一、创建数据表二、连接mysql数据库三、封装成一个完整的轻量级 ORM 风格类3.1 表结构

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

在Linux中改变echo输出颜色的实现方法

《在Linux中改变echo输出颜色的实现方法》在Linux系统的命令行环境下,为了使输出信息更加清晰、突出,便于用户快速识别和区分不同类型的信息,常常需要改变echo命令的输出颜色,所以本文给大家介... 目python录在linux中改变echo输出颜色的方法技术背景实现步骤使用ANSI转义码使用tpu

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合