【UCAS自然语言处理作业一】利用BeautifulSoup爬取中英文数据,计算熵,验证齐夫定律

本文主要是介绍【UCAS自然语言处理作业一】利用BeautifulSoup爬取中英文数据,计算熵,验证齐夫定律,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 前言
    • 中文
      • 数据爬取
        • 爬取界面
        • 爬取代码
      • 数据清洗
      • 数据分析
      • 实验结果
    • 英文
      • 数据爬取
        • 爬取界面
        • 动态爬取
      • 数据清洗
      • 数据分析
      • 实验结果
    • 结论

前言

  • 本文分别针对中文,英文语料进行爬虫,并在两种语言上计算其对应的熵,验证齐夫定律
  • github: ShiyuNee/python-spider (github.com)

中文

数据爬取

本实验对四大名著的内容进行爬取,并针对四大名著的内容展开中文文本分析,统计熵,验证齐夫定律

  • 爬取网站: https://5000yan.com/
  • 以水浒传的爬取为例展示爬取过程
爬取界面

在这里插入图片描述

  • 我们需要通过本页面,找到水浒传所有章节对应的url,从而获取每一个章节的信息

  • 可以注意到,这里每个章节都在class=menu-itemli中,且这些项都包含在class=panbaiul内,因此,我们对这些项进行提取,就能获得所有章节对应的url

  • 以第一章为例,页面为

    在这里插入图片描述

    • 可以看到,所有的正文部分都包含在class=grapdiv内,因此,我们只要提取其内部所有div中的文字,拼接在一起即可获得全部正文
爬取代码
def get_book(url, out_path):root_url = urlheaders={'User-Agent':'Mozilla/5.0 (Linux; Android 6.0; Nexus 5 Build/MRA58N) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Mobile Safari/537.36'} # chrome浏览器page_text=requests.get(root_url, headers=headers).content.decode()soup1=BeautifulSoup(page_text, 'lxml')res_list = []# 获取所有章节的urltag_list = soup1.find(class_='paiban').find_all(class_='menu-item')url_list = [item.find('a')['href'] for item in tag_list]for item in url_list: # 对每一章节的内容进行提取chapter_page = requests.get(item, headers=headers).content.decode()chapter_soup = BeautifulSoup(chapter_page, 'lxml')res = ''try:chapter_content = chapter_soup.find(class_='grap')except:raise ValueError(f'no grap in the page {item}')chapter_text = chapter_content.find_all('div')print(chapter_text)for div_item in chapter_text:res += div_item.text.strip()res_list.append({'text': res})write_jsonl(res_list, out_path)
  • 我们使用beautifulsoup库,模拟Chrome浏览器的header,对每一本书的正文内容进行提取,并将结果保存到本地

数据清洗

  • 因为文本中会有括号,其中的内容是对正文内容的拼音,以及解释。这些解释是不需要的,因此我们首先对去除括号中的内容。注意是中文的括号

    def filter_cn(text):a = re.sub(u"\\(.*?)|\\{.*?}|\\[.*?]|\\【.*?】|\\(.*?\\)", "", text)return a
    
  • 使用结巴分词,对中文语句进行分词

    def tokenize(text):return jieba.cut(text)
    
  • 删除分词后的标点符号项

    def remove_punc(text):puncs = string.punctuation + "“”,。?、‘’:!;"new_text = ''.join([item for item in text if item not in puncs])return new_text
    
  • 对中文中存在的乱码,以及数字进行去除

    def get_cn_and_number(text):return re.sub(u"([^\u4e00-\u9fa5\u0030-\u0039])","",text)
    

整体流程代码如下所示

def collect_data(data_list: list):voc = defaultdict(int)for data in data_list:for idx in range(len(data)):filtered_data = filter_cn(data[idx]['text'])tokenized_data = tokenize(filtered_data)for item in tokenized_data:k = remove_punc(item)k = get_cn_and_number(k)if k != '':voc[k] += 1return voc

数据分析

针对收集好的字典类型数据(key为词,value为词出现的次数),统计中文的熵,并验证齐夫定律

  • 熵的计算

    def compute_entropy(data: dict):cnt = 0total_num = sum(list(data.values()))print(total_num)for k, v in data.items():p = v / total_numcnt += -p * math.log(p)print(cnt)
    
  • 齐夫定律验证(由于词项比较多,为了展示相对细节的齐夫定律图,我们仅绘制前200个词)

    def zip_law(data: dict):cnt_list = data.values()sorted_cnt = sorted(enumerate(cnt_list), reverse=True, key=lambda x: x[1])plot_y = [item[1] for item in sorted_cnt[:200]]print(plot_y)x = range(len(plot_y))plot_x = [item + 1 for item in x]plt.plot(plot_x, plot_y)plt.show()
    

实验结果

  • 西游记

    • 熵:8.2221(共364221种token)

    在这里插入图片描述

  • 西游记+水浒传

    • 熵:8.5814(共836392种token)

      在这里插入图片描述

  • 西游记+水浒传+三国演义

    • 熵:8.8769(共1120315种token)

      在这里插入图片描述

  • 西游记+水浒传+三国演义+红楼梦

    • 熵:8.7349(共1585796种token)

      在这里插入图片描述

英文

数据爬取

本实验对英文读书网站上的图书进行爬取,并针对爬取内容进行统计,统计熵,验证齐夫定律

  • 爬取网站: Bilingual Books in English | AnyLang
  • 以The Little Prince为例介绍爬取过程
爬取界面

在这里插入图片描述

  • 我们需要通过本页面,找到所有书对应的url,然后获得每本书的内容

  • 可以注意到,每本书的url都在class=field-contentspan中,且这些项都包含在class=ajax-linka内,因此,我们对这些项进行提取,就能获得所有书对应的url

  • 以The Little Prince为例,页面为

    在这里插入图片描述

    • 可以看到,所有的正文部分都包含在class=page n*div内,因此,我们只要提取其内部所有div中的<p> </p>内的文字,拼接在一起即可获得全部正文
动态爬取

需要注意的是,英文书的内容较少,因此我们需要爬取多本书。但此页面只有下拉后才会加载出新的书,因此我们需要进行动态爬取

  • 使用selenium加载Chrome浏览器,并模拟浏览器下滑操作,这里模拟5次

    def down_ope(url):driver = webdriver.Chrome()  # 根据需要选择合适的浏览器驱动  driver.get(url)  # 替换为你要爬取的网站URL  for _ in range(5):driver.execute_script("window.scrollTo(0, document.body.scrollHeight);")  time.sleep(5)return driver
    
  • driver中的内容传递给BeautifulSoup

        soup1=BeautifulSoup(driver.page_source, 'lxml')books = soup1.find_all(class_ = 'field-content')
    

整体代码为

def get_en_book(url, out_dir):root_url = url + '/en/books/en'headers={'User-Agent':'Mozilla/5.0 (Linux; Android 6.0; Nexus 5 Build/MRA58N) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Mobile Safari/537.36'} # chrome浏览器driver = down_ope(root_url)soup1=BeautifulSoup(driver.page_source, 'lxml')books = soup1.find_all(class_ = 'field-content')book_url = [item.a['href'] for item in books]for item in book_url:if item[-4:] != 'read':continueout_path = out_dir + item.split('/')[-2] + '.jsonl'time.sleep(2)try:book_text=requests.get(url + item, headers=headers).content.decode()except:continuesoup2=BeautifulSoup(book_text, 'lxml')res_list = []sec_list = soup2.find_all('div', class_=re.compile('page n.*'))for sec in sec_list:res = ""sec_content = sec.find_all('p')for p_content in sec_content:text = p_content.text.strip()if text != '':res += textprint(res)res_list.append({'text': res})write_jsonl(res_list, out_path)

数据清洗

  • 使用nltk库进行分词

    def tokenize_en(text):sen_tok = nltk.sent_tokenize(text)word_tokens = [nltk.word_tokenize(item) for item in sen_tok]tokens = []for temp_tokens in word_tokens:for tok in temp_tokens:tokens.append(tok.lower())return tokens
    
  • 对分词后的token删除标点符号

    def remove_punc(text):puncs = string.punctuation + "“”,。?、‘’:!;"new_text = ''.join([item for item in text if item not in puncs])return new_text
    
  • 利用正则匹配只保留英文

    def get_en(text):return re.sub(r"[^a-zA-Z ]+", '', text)
    

整体流程代码如下

def collect_data_en(data_list: list):voc = defaultdict(int)for data in data_list:for idx in range(len(data)):tokenized_data = tokenize_en(data[idx]['text'])for item in tokenized_data:k = remove_punc(item)k = get_en(k)if k != '':voc[k] += 1return voc

数据分析

数据分析部分与中文部分的分析代码相同,都是利用数据清洗后得到的词典进行熵的计算,并绘制图像验证齐夫定律

实验结果

  • 10本书(1365212种token)

    • 熵:6.8537

    在这里插入图片描述

  • 30本书(3076942种token)

    • 熵:6.9168

      在这里插入图片描述

  • 60本书(4737396种token)

    • 熵:6.9164

      在这里插入图片描述

结论

从中文与英文的分析中不难看出,中文词的熵大于英文词的熵,且二者随语料库的增大都有逐渐增大的趋势。

  • 熵的数值与tokenizer,数据预处理方式有很大关系
  • 不同结论可能源于不同的数据量,tokenizer,数据处理方式

我们分别对中英文在三种不同数据量熵对齐夫定律进行验证

  • 齐夫定律:一个词(字)在语料库中出现的频率,与其按照出现频率的排名成反比

  • 若齐夫定律成立

    • 若我们直接对排序(Order)与出现频率(Count)进行绘制,则会得到一个反比例图像
    • 若我们对排序的对数(Log Order)与出现频率的对数(Log Count)进行绘制,则会得到一条直线
    • 这里由于长尾分布,为了方便分析,只对出现次数最多的top 1000个token进行绘制
  • 从绘制图像中可以看出,齐夫定律显然成立

这篇关于【UCAS自然语言处理作业一】利用BeautifulSoup爬取中英文数据,计算熵,验证齐夫定律的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/285761

相关文章

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模