yll duqiang 制作geo三个独立数据集IPF基因集合 用于分析某个基因是否与生存期相关THBS2 mmp7

本文主要是介绍yll duqiang 制作geo三个独立数据集IPF基因集合 用于分析某个基因是否与生存期相关THBS2 mmp7,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

制作IPF基因集合 用于分析某个基因是否与生存期相关

load("G:/r/duqiang_IPF/surval_analysis_3_independent_dataset_IPF/combined_data_for_surval.RDdata")1#输入想要查询的基因名称或者向量
gene_interested="MMP7"  #输入想要查询的基因名称或者向量
library(stringr)
gene_interested=readClipboard() %>% str_split(pattern = ",",gene_interested)[[1]]2#首先查看基因是否存在数据集中,如果不存在则去掉该基因
table( gene_interested %in% rownames(expr.17077clean) & gene_interested %in% rownames(expr.freibrug.IPF))#制作phedata数据用于存活分析
if(1==1){#制作phedata数据用于存活分析for (eachgene in gene_interested) {phe.freigbrug[paste0(eachgene)]=ifelse(expr.freibrug.IPF[eachgene,]>median(expr.freibrug.IPF[eachgene,]),"High",'Low')}head(phe.freigbrug)for (eachgene in gene_interested) {phe.senia[paste0(eachgene)]=ifelse(expr.siena.IPF[eachgene,]>median(expr.siena.IPF[eachgene,]),"High",'Low')}head(phe.senia)for (eachgene in gene_interested) {phe.17077[paste0(eachgene)]=ifelse(expr.17077clean[eachgene,]>median(expr.17077clean[eachgene,]),"High",'Low')}head(phe.17077)}###开始合并三个数据集的phe数据phe_final_3=rbind(phe.freigbrug,phe.senia,phe.17077)
dim(phe_final_3) #[1] 176  5
head(phe_final_3)library(dplyr)
phe_final_3=phe_final_3 %>% transform(time=as.numeric(time))%>% transform(event=as.numeric(event))
getwd()#批量基因差异分析
library(survival)
library(survminer)
for (eachgene in gene_interested) {p=ggsurvplot(survfit(Surv(time, event)~phe_final_3[,eachgene], data=phe_final_3), conf.int=F, pval=TRUE)pdf(paste0(eachgene, "_surval_analysis_from_3_institutes.pdf"),width = 5, height = 5)print(p, newpage = FALSE)dev.off()}

THBS2

在这里插入图片描述

ASB2

在这里插入图片描述

MMP7
在这里插入图片描述


if(1==1){#读取感兴趣的基因gene_interested=readClipboard()head(gene_interested)library(stringr)gene_interested=str_split(pattern = ",",gene_interested)[[1]]gene_interested=gene_interested[-which(gene_interested=="RAB40A")]gene_interested#gpl14550load(file ="G:/r/duqiang_IPF/GSE70866—true—_BAL_IPF_donors_RNA-seq/Rdatafor_freibrug.RData")head(expr.freiburg_clean)[,1:4]head(meta.14550)[,1:4]dim(expr.freiburg)dim(meta.14550)exprSet.114550.ipf=expr.freiburg[,which(colnames(expr.freiburg)=="GSM1820739"):which(colnames(expr.freiburg)=="GSM1820850")]dim(exprSet.114550.ipf) #[1] 20330   112head(exprSet.114550.ipf)[,1:4]#ID 转换if(1==1){ids14550=data.table::fread("G:/r/duqiang_IPF/GSE70866_BAL_IPF_donors_RNA-seq/GPL14550-9757.txt",)##读取head(ids14550)colnames(ids14550)ids14550=ids14550[,c("ID","GENE","GENE_SYMBOL")]head(ids14550)colnames(ids14550) <- c("PROBE_ID","Entrez_ID", "SYMBOL_ID")#改名,让他适合下面的自定义函数#自建函数p2g <- function(eset,probe2symbol){library(dplyr)library(tibble)library(tidyr)eset <- as.data.frame(eset)p2g_eset <- eset %>% rownames_to_column(var="PROBE_ID") %>% #合并探针的信息inner_join(probe2symbol,by="PROBE_ID") %>% #去掉多余信息select(-PROBE_ID) %>% #重新排列dplyr::select(SYMBOL_ID,everything()) %>% #求出平均数(这边的点号代表上一步产出的数据)mutate(rowMean = rowMeans(.[grep("GSM", names(.))])) %>% #去除symbol中的NAfilter(SYMBOL_ID != "NA") %>% #把表达量的平均值按从大到小排序arrange(desc(rowMean)) %>% # symbol留下第一个distinct(SYMBOL_ID,.keep_all = T) %>% #反向选择去除rowMean这一列dplyr::select(-rowMean) %>% # 列名变成行名column_to_rownames(var = "SYMBOL_ID")#save(p2g_eset, file = "p2g_eset.Rdata")return(p2g_eset)}p2g_eset <- p2g(eset = exprSet.114550.ipf, probe2symbol = ids14550)head(p2g_eset)exprSet.114550.ipf=p2g_eset[,!colnames(p2g_eset)=="Entrez_ID"]}head(exprSet.114550.ipf)[,1:4]colnames(meta.14550)=c('event','time','sex','diagnosis')head(meta.14550)[,1:4]meta.14550=meta.14550[rownames(meta.14550) %in% colnames(exprSet.114550.ipf),]head(meta.14550)[,1:4]dim(meta.14550) #[1] 112   7dim(exprSet.114550.ipf) #[1] 20330   112head(exprSet.114550.ipf)[,1:4]phe.14550=transform(meta.14550,event=as.numeric(event)) %>% transform(time=as.numeric(time)) phe.14550=phe.14550[,1:3]head(phe.14550)exprSet.114550=exprSet.114550.ipf %>% transform(as.numeric()) %>% as.matrix()head(exprSet.114550)[,1:3]for (eachgene in gene_interested) {phe.14550[paste0(eachgene)]=ifelse(exprSet.114550[eachgene,]>median(exprSet.114550[eachgene,]),"High",'Low')}head(phe.14550)dim(phe.14550)dim(phe.17077)##gpl17077load(file ="G:/r/duqiang_IPF/GSE70866—true—_BAL_IPF_donors_RNA-seq/expr17077.RData")head(expr.17077clean)dim(expr.17077clean) #[1] 20190    64head(meta.17077)colnames(meta.17077)=colnames(meta.14550)head(meta.17077)meta.17077=meta.17077[,1:3]head(meta.17077)head(expr.17077clean)[,1:3]library(dplyr)phe.17077=meta.17077head(meta.17077)exprSet.17077=expr.17077clean  %>% as.matrix() %>% transform(as.numeric()) #数据格式转换head(exprSet.17077)[,1:3]for (eachgene in gene_interested) {phe.17077[paste0(eachgene)]=ifelse(exprSet.17077[eachgene,]>median(exprSet.17077[eachgene,]),"High",'Low')}head(phe.17077)##开始合并两个平台的phe数据phe_final_3=rbind(phe.14550,phe.17077)dim(phe_final_3) #[1] 176  37getwd()dir.create("G:/r/duqiang_IPF/GSE70866—true—_BAL_IPF_donors_RNA-seq/survival_for_genes-three")setwd("G:/r/duqiang_IPF/GSE70866—true—_BAL_IPF_donors_RNA-seq/survival_for_genes-three")head(phe_final_3)phe_final_3=phe_final_3 %>% transform(time=as.numeric(time))%>% transform(event=as.numeric(event))getwd()#save(phe_final_3,meta.14550,meta.17077,expr.17077clean,exprSet.114550,file = "G:/r/duqiang_IPF/GSE70866—true—_BAL_IPF_donors_RNA-seq/survival_for_genes-three/3-institutes.RData")load("G:/r/duqiang_IPF/GSE70866—true—_BAL_IPF_donors_RNA-seq/survival_for_genes-three/3-institutes.RData")#批量基因差异分析for (eachgene in gene_interested) {p=ggsurvplot(survfit(Surv(time, event)~phe_final_3[,eachgene], data=phe_final_3), conf.int=F, pval=TRUE)pdf(paste0(eachgene, "_surval_analysis_from_3_institutes.pdf"),width = 5, height = 5)print(p, newpage = FALSE)dev.off()}load("G:/r/duqiang_IPF/GSE70866—true—_BAL_IPF_donors_RNA-seq/survival_for_genes-three/3-institutes.RData")#批量基因差异分析head(phe_final_3)}load("G:/r/duqiang_IPF/GSE70866—true—_BAL_IPF_donors_RNA-seq/survival_for_genes-three/3-institutes.RData")colnames(exprSet.114550)
nrow(meta.14550)
dim(exprSet.114550) #[1] 20190   112if(1==1){head(meta.14550)expr.freibrug.IPF=exprSet.114550[,which(colnames(exprSet.114550)=="GSM1820739"):which(colnames(exprSet.114550)=="GSM1820800")]meta.freibrug.IPF=meta.14550[1:62,]expr.siena.IPF=exprSet.114550[,!(colnames(exprSet.114550) %in% colnames(expr.freibrug.IPF)) ]meta.siena.IPF=meta.14550[rownames(meta.14550) %in% colnames(expr.siena.IPF),]head(meta.siena.IPF)dim(meta.siena.IPF) #[1] 50  7dim(expr.17077clean) #[1] 20190    64head(meta.17077)colnames(meta.17077)=c("time","event","sex","diagnosis")head(meta.17077)meta.17077=meta.17077[,1:4] %>%select(event,everything())meta.14550=meta.14550[,1:4]head(meta.14550)meta.freibrug.IPF=meta.freibrug.IPF[,1:4]meta.siena.IPF=meta.siena.IPF[,1:4]head(meta.17077)dim(expr.17077clean)# [1] 20190    64identical(rownames(expr.freibrug.IPF),rownames(expr.17077clean))phe.freigbrug=meta.freibrug.IPFphe.senia=meta.siena.IPFphe.17077=meta.17077expr.17077clean=as.matrix(expr.17077clean)getwd()dir.create("G:/r/duqiang_IPF/surval_analysis_3_independent_dataset_IPF")setwd("G:/r/duqiang_IPF/surval_analysis_3_independent_dataset_IPF")save(expr.freibrug.IPF,  phe.freigbrug,expr.siena.IPF,     phe.senia,expr.17077clean,    phe.17077,file ="G:/r/duqiang_IPF/surval_analysis_3_independent_dataset_IPF/combined_data_for_surval.RDdata" )}

这篇关于yll duqiang 制作geo三个独立数据集IPF基因集合 用于分析某个基因是否与生存期相关THBS2 mmp7的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/282693

相关文章

慢sql提前分析预警和动态sql替换-Mybatis-SQL

《慢sql提前分析预警和动态sql替换-Mybatis-SQL》为防止慢SQL问题而开发的MyBatis组件,该组件能够在开发、测试阶段自动分析SQL语句,并在出现慢SQL问题时通过Ducc配置实现动... 目录背景解决思路开源方案调研设计方案详细设计使用方法1、引入依赖jar包2、配置组件XML3、核心配

Java NoClassDefFoundError运行时错误分析解决

《JavaNoClassDefFoundError运行时错误分析解决》在Java开发中,NoClassDefFoundError是一种常见的运行时错误,它通常表明Java虚拟机在尝试加载一个类时未能... 目录前言一、问题分析二、报错原因三、解决思路检查类路径配置检查依赖库检查类文件调试类加载器问题四、常见

Java注解之超越Javadoc的元数据利器详解

《Java注解之超越Javadoc的元数据利器详解》本文将深入探讨Java注解的定义、类型、内置注解、自定义注解、保留策略、实际应用场景及最佳实践,无论是初学者还是资深开发者,都能通过本文了解如何利用... 目录什么是注解?注解的类型内置注编程解自定义注解注解的保留策略实际用例最佳实践总结在 Java 编程

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

Maven中引入 springboot 相关依赖的方式(最新推荐)

《Maven中引入springboot相关依赖的方式(最新推荐)》:本文主要介绍Maven中引入springboot相关依赖的方式(最新推荐),本文给大家介绍的非常详细,对大家的学习或工作具有... 目录Maven中引入 springboot 相关依赖的方式1. 不使用版本管理(不推荐)2、使用版本管理(推

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll