Spark Streaming中,增大任务并发度的方法有哪些?

2023-10-25 04:50

本文主要是介绍Spark Streaming中,增大任务并发度的方法有哪些?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Spark Streaming中,增大任务并发度的方法有哪些?


0 准备阶段

Q: 在Spark集群中,集群的节点个数、RDD分区个数、CPU内核个数三者与并行度的关系是什么?

我们先梳理一下Spark中关于并发度涉及的几个概念: File, Block, Split, Task, Partition, RDD以及节点数、Executor数、core数目的关系。




  1. 输入可能以多个文件的形式存储在HDFS上,每个File都包括了很多Block。
  2. 当Spark读取这些文件作为输入时,会根据具体数据格式对应的InputFormat进行解析,一般是将若干个Block合并成一个输入分片(InputSplit),注意InputSplit不能跨越文件。
  3. 随后将为这些输入分片生成具体的Task。InputSplit与Task是一一对应的关系。
  4. 这些具体的Task,每个都会被分配到集群上的某个节点的某个Executor去执行。
  • 每个节点可以起一个或多个Executor。
  • 每个Executor由若干core组成,每个Executor的每个core一次只能执行一个Task。
  • 每个Task执行的结果就是生成了目标RDD的一个partition。

Note:
这里的core是虚拟的core而不是机器的物理CPU核,可以理解为Executor的一个工作线程。

Task被执行的并发度 = Executor数目 * 每个Executor核数

至于partition的数目:
  • 对于数据读入阶段,例如: sc.textFile,输入文件被划分为多少InputSplit就会需要多少初始Task。
  • 在Map阶段,partition数目保持不变。
  • 在Reduce阶段,RDD的聚合会出发shuffle操作,聚合后的RDD的partition数目跟具体操作有关。例如:repartition操作会聚合成指定分区数,还有一些算子是可配置的。

1 Spark Streaming增大任务并发度
Q: 在Spark Streaming中,增大任务并发度的方法有哪些?
A: s1 core的个数: task线程数,也就是--executor-cores
      s2 repartition
      s3 Streaming + Kafka,Direct方式,则增加partition分区数
      s4 Streaming + Kafka,Receiver方式,则增加Receiver个数
      s5 reduceByKey和reduceByKeyAndWindow传入第二个参数

1.1 解析

s1 & s2: 
RDD在计算的时候,每个分区都会起一个task,所以RDD的分区数目决定了总的task数据。
申请的计算节点(Executor)数目和每个计算节点核数,决定了你同一时刻可以并行执行的task。
e g:
RDD有100个分区,那么计算的时候就会生成100个task,你的资源配置为10个计算节点,每个2个核,同一时刻可以并行的task数目为20,计算这个RDD就需要5个轮次。
如果计算资源不变,你有101个task的话,就需要6个轮次,在最后一轮中,只有一个task在执行,其余核都在空转。
如果资源不变,你的RDD只有两个分区,那么同一时刻只有2个task运行,其余18个核空转,造成资源浪费。
这就是在Spark调优中,通过增大RDD分区数目,进而增大任务并行度的做法。

s5:
如果在计算的任何stage中使用的并行task的数量没有足够多,那么集群资源是无法被充分利用的。举例来说,对于分布式的reduce操作,比如reduceByKey和reduceByKeyAndWindow,默认的并行task的数量是由spark.default.parallelism参数决定的。你可以在reduceByKey等操作中,传入第二个参数,手动指定该操作的并行度,也可以调节全局的spark.default.parallelism参数。

1.2 增大kafka中的partition可以增加Spark在处理数据上的并行度吗?

s4:
在Receiver的方式中,Spark中的partition和Kafka中的partition并不是相关的,所以如果我们加大每个topic的partition数量,仅仅是增加线程来处理由单一Receiver消费的主题。但是这并没有增加Spark在处理数据上的并行度。但是,该方式下,一个Receiver就对应于一个partition,所以,可以通过增加Receiver的个数来增大Spark任务并行度。

s3:
而在Direct方式中,Kafka中的partition与RDD中的partition是一一对应的并行读取Kafka数据,这种映射关系也更利于理解和优化。


Reference Link

[1] Spark Streaming和Kafka整合开发指南(一): https://www.iteblog.com/archives/1322.html

[2] Spark Streaming和Kafka整合开发指南(二):https://www.iteblog.com/archives/1326.html

[3] Spark Streaming性能调优详解: https://www.cnblogs.com/gaopeng527/p/4961701.html

[4] Spark Streaming:性能调优 http://blog.csdn.net/kwu_ganymede/article/details/50577920

[5] Spark踩坑记 —— Spark Streaming + Kafka https://www.cnblogs.com/xlturing/p/6246538.html

这篇关于Spark Streaming中,增大任务并发度的方法有哪些?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/280127

相关文章

golang中reflect包的常用方法

《golang中reflect包的常用方法》Go反射reflect包提供类型和值方法,用于获取类型信息、访问字段、调用方法等,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值... 目录reflect包方法总结类型 (Type) 方法值 (Value) 方法reflect包方法总结

C# 比较两个list 之间元素差异的常用方法

《C#比较两个list之间元素差异的常用方法》:本文主要介绍C#比较两个list之间元素差异,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. 使用Except方法2. 使用Except的逆操作3. 使用LINQ的Join,GroupJoin

MySQL查询JSON数组字段包含特定字符串的方法

《MySQL查询JSON数组字段包含特定字符串的方法》在MySQL数据库中,当某个字段存储的是JSON数组,需要查询数组中包含特定字符串的记录时传统的LIKE语句无法直接使用,下面小编就为大家介绍两种... 目录问题背景解决方案对比1. 精确匹配方案(推荐)2. 模糊匹配方案参数化查询示例使用场景建议性能优

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

一文详解Git中分支本地和远程删除的方法

《一文详解Git中分支本地和远程删除的方法》在使用Git进行版本控制的过程中,我们会创建多个分支来进行不同功能的开发,这就容易涉及到如何正确地删除本地分支和远程分支,下面我们就来看看相关的实现方法吧... 目录技术背景实现步骤删除本地分支删除远程www.chinasem.cn分支同步删除信息到其他机器示例步骤

Golang如何对cron进行二次封装实现指定时间执行定时任务

《Golang如何对cron进行二次封装实现指定时间执行定时任务》:本文主要介绍Golang如何对cron进行二次封装实现指定时间执行定时任务问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录背景cron库下载代码示例【1】结构体定义【2】定时任务开启【3】使用示例【4】控制台输出总结背景

在Golang中实现定时任务的几种高效方法

《在Golang中实现定时任务的几种高效方法》本文将详细介绍在Golang中实现定时任务的几种高效方法,包括time包中的Ticker和Timer、第三方库cron的使用,以及基于channel和go... 目录背景介绍目的和范围预期读者文档结构概述术语表核心概念与联系故事引入核心概念解释核心概念之间的关系

在Linux终端中统计非二进制文件行数的实现方法

《在Linux终端中统计非二进制文件行数的实现方法》在Linux系统中,有时需要统计非二进制文件(如CSV、TXT文件)的行数,而不希望手动打开文件进行查看,例如,在处理大型日志文件、数据文件时,了解... 目录在linux终端中统计非二进制文件的行数技术背景实现步骤1. 使用wc命令2. 使用grep命令

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到