程序员的算法趣题:Q25 鞋带的时髦系法(Java版)

2023-10-25 03:20

本文主要是介绍程序员的算法趣题:Q25 鞋带的时髦系法(Java版),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目说明

即便系得很紧,鞋带有时候还是免不了会松掉。运动鞋的鞋带有很多时髦的系法。
下面看看这些系法里,鞋带是如何穿过一个又一个鞋带孔的。
如下图所示的这几种依次穿过 12 个鞋带孔的系法很有名
(这里不考虑鞋带穿过鞋带孔时是自外而内还是自内而外)。

Q25鞋带的时髦系法

这里指定鞋带最终打结固定的位置如上图中的前两种系法所示,
即固定在最上方(靠近脚腕)的鞋带孔上,并交错使用左右的鞋带孔。
求:鞋带交叉点最多时的交叉点个数。
譬如上图左侧的系法是 5 个,正中间的系法是 9 个。

思路
6个孔有5条线段

1.六个孔(左右各三个)时,有五条线
2.每条线都有左、右两个编号:{左孔编号,右孔编号}
3.五条线之间两两组合,罗列出所有可能性
4.判断是否有交叉点,统计个数并求出最大值

代码

private static int max = 0; // 统计最大值public static void main(String[] args) {// {左孔编号,右孔编号}// int[] L1 = {1,2};// int[] L2 = {3,1};// System.out.println(judge(L1, L2)); // 测试两条线段是否有交叉点int N = 6; // 左右各有6个孔// 两个集合分别保存左边、右边可选的孔(不包含起点和终点)List<Integer> left = new LinkedList<>();List<Integer> right = new LinkedList<>();// 已经要求最上边的左右两个孔是起点和终点,所以后续的组合只与左右各自剩下的5个孔有关,所以从1开始即可for (int i = 1; i < N; i++) {left.add(i);right.add(i);}List<String> lines = new LinkedList<>(); // 保存生成的每一条线段,格式如:"左#右"// 以左上方的第一个孔为“起点”(因为是统计交叉点的最大值,从左、右开始都不影响)laceup(0, null, left, right, lines);System.out.println("max = " + max);
}
/*** 系鞋带:每次调用该方法,都会生成一条线段(从左或右中选一个孔,与当前的R或者L连成线段)* @param L     如果有值,则本次从左侧孔出发,在右侧选一个孔,连成线段* @param R     如果有值,则本次从右侧孔出发,在左侧选一个孔,连成线段* @param left  左侧剩余可用的孔* @param right 右侧剩余可用的孔*/
private static void laceup(Integer L, Integer R, List<Integer> left, List<Integer> right, List<String> lines) {// 入参检查if (L == null && R == null) return;if (left == null || right == null || lines == null) return;/**  已生成所有线段,开始两两判断,统计交叉点的个数*/// 最初以左上方的孔为起点if (L != null && right.size() == 0) {lines.add(L + "#" + 0); // 最后一条线段int cnt = countNode(lines);lines.remove(L + "#" + 0);max = max < cnt ? cnt : max;return;}// 最初以右上方的孔为起点if (R != null && left.size() == 0) {lines.add(0 + "#" + R); // 最后一条线段int cnt = countNode(lines);lines.remove(0 + "#" + R);max = max < cnt ? cnt : max;return;}/**  选择一个孔,连成线段*/if (L != null) {                                    // 如果L非空,说明上一次选择的是左边的孔,这次从右边选int index = left.indexOf(L);if (index >= 0)                                 // 首次进来时,起点不在集合中,index为-1,直接remove会报错left.remove(index);                         // L已经用了两次了(一进一出),起点和终点只能用一次,需要删除了for (int i = 0; i < right.size(); i++) {Integer r = right.get(i);                   // 右边选一个孔lines.add(L + "#" + r);                     // 生成一条线段// 这一次选择的是右边的孔laceup(null, r, left, right, lines);        // 继续生成后续的线段lines.remove(L + "#" + r);                  // 恢复}if (index >= 0)left.add(index, L);                         // 恢复} else {                                            // 如果R非空,说明上一次选择的是右边的孔,这次从左边选int index = right.indexOf(R);if (index >= 0)                                 // 首次进来时,起点不在集合中,index为-1,直接remove会报错right.remove(index);                        // R已经用了两次了(一进一出),需要删除了for (int i = 0; i < left.size(); i++) {Integer l = left.get(i);                    // 左边选一个孔lines.add(l + "#" + R);                     // 生成一条线段laceup(l, null, left, right, lines);        // 继续生成后续的线段lines.remove(l + "#" + R);                  // 恢复}if (index >= 0)right.add(index, R);                        // 恢复}}
/*** 统计线段中的交叉点数量* @param lines 线段集合* @return */
private static int countNode(List<String> lines) {int count = 0;  // 统计交叉点的数量for (int i = 0; i < lines.size(); i++) {String s1 = lines.get(i);                       // 取出一条线段String[] ss = s1.split("#");                    // 通过#切割成两部分int l1 = Integer.parseInt(ss[0]);               // String ==> intint r1 = Integer.parseInt(ss[1]);               // String ==> intint[] a = {l1, r1};                             // 将线段信息组装成数组形式for (int j = i + 1; j < lines.size(); j++) {    // 从i+1开始,可以避免“a和b,b和a”类型的重复比较String s2 = lines.get(j);String[] ss2 = s2.split("#");int l2 = Integer.parseInt(ss2[0]);int r2 = Integer.parseInt(ss2[1]);int[] b = {l2, r2};count += judge(a, b) ? 1 : 0;               // 成功,+1; 失败,不变。}}System.out.println(count + " ==> " + lines);        // 不关注鞋带的系法时,可以注释掉该输出语句,能节约80%左右的时间(N=6时,运行时间:2.5s ==> 0.5s)return count;
}
/*** 判断两条线段是否有交叉点* @param L1    {左孔编号,右孔编号}* @param L2    {左孔编号,右孔编号}* @return      是否有交叉点*/
private static boolean judge(int[] L1, int[] L2) {// 不合法if (L1 == null || L2 == null) return false;// 自己和自己比if (Arrays.equals(L1, L2)) return false;// 两条线段的左边相减、右边相减,只要相乘的结果为负数,就有交叉点。(如果不理解,推荐动手画图感受一下)return (L1[0] - L2[0]) * (L1[1] - L2[1]) < 0;
}

结果

max = 45

效果图

45 ==> [0#5, 1#5, 1#4, 2#4, 2#3, 3#3, 3#2, 4#2, 4#1, 5#1, 5#0]
左右各6孔有45个交叉点的鞋带系法.png

拓展

如果鞋带孔较多,耗时很多。
我们可以观察单侧鞋带孔数和最大交叉点的联系,找到一些规律:

单侧鞋带孔数最大交叉点数量第二列的差值
10--
211
365
4159
52813
64517
76621
......等差数列:相差4
N\sum_{i=2}^{N}(4*(i-2)+1)
整理后:(2N-3)*(N-1)
4*(N-2)+1,N>=2


 

 

 

 

 

 

 

 

 




 

 

这篇关于程序员的算法趣题:Q25 鞋带的时髦系法(Java版)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/279689

相关文章

Spring Boot整合Redis注解实现增删改查功能(Redis注解使用)

《SpringBoot整合Redis注解实现增删改查功能(Redis注解使用)》文章介绍了如何使用SpringBoot整合Redis注解实现增删改查功能,包括配置、实体类、Repository、Se... 目录配置Redis连接定义实体类创建Repository接口增删改查操作示例插入数据查询数据删除数据更

Java Lettuce 客户端入门到生产的实现步骤

《JavaLettuce客户端入门到生产的实现步骤》本文主要介绍了JavaLettuce客户端入门到生产的实现步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 目录1 安装依赖MavenGradle2 最小化连接示例3 核心特性速览4 生产环境配置建议5 常见问题

Java使用Swing生成一个最大公约数计算器

《Java使用Swing生成一个最大公约数计算器》这篇文章主要为大家详细介绍了Java使用Swing生成一个最大公约数计算器的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一下... 目录第一步:利用欧几里得算法计算最大公约数欧几里得算法的证明情形 1:b=0情形 2:b>0完成相关代码第二步:加

Java 的ArrayList集合底层实现与最佳实践

《Java的ArrayList集合底层实现与最佳实践》本文主要介绍了Java的ArrayList集合类的核心概念、底层实现、关键成员变量、初始化机制、容量演变、扩容机制、性能分析、核心方法源码解析、... 目录1. 核心概念与底层实现1.1 ArrayList 的本质1.1.1 底层数据结构JDK 1.7

Java Map排序如何按照值按照键排序

《JavaMap排序如何按照值按照键排序》该文章主要介绍Java中三种Map(HashMap、LinkedHashMap、TreeMap)的默认排序行为及实现按键排序和按值排序的方法,每种方法结合实... 目录一、先理清 3 种 Map 的默认排序行为二、按「键」排序的实现方式1. 方式 1:用 TreeM

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

一篇文章彻底搞懂macOS如何决定java环境

《一篇文章彻底搞懂macOS如何决定java环境》MacOS作为一个功能强大的操作系统,为开发者提供了丰富的开发工具和框架,下面:本文主要介绍macOS如何决定java环境的相关资料,文中通过代码... 目录方法一:使用 which命令方法二:使用 Java_home工具(Apple 官方推荐)那问题来了,

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node