【图像配准】Canny边缘检测+模板配准红外可见光双路数据

本文主要是介绍【图像配准】Canny边缘检测+模板配准红外可见光双路数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

研究目的

最近在做无人机遥感红外和可见光双路数据配准,由于红外相机视野范围较小,因此配准的目的主要是在可见光的视野范围内,裁剪出红外图像对应的部分,同时,保持可见光的高分辨率不变。

本文思路

本文尝试使用Canny边缘检测提取红外和可见光的边缘特征,然后使用模板匹配的方式去进行配准。由于红外图像和可见光图像的分辨率并不相同,因此需要对可见光不断进行下采样,以接近红外图像的分辨率。

总体看来,使用传统方法做跨模态配准效果有限,主要是由于红外图像特征较少,不过在光照充足和建筑特征明显的情况下,有一定效果,后续会采用基于深度学习的配准方法,相关图片由于项目原因不对外公布,这里对代码进行归档。

实验代码

import numpy as np
import argparse
import cv2
import osif __name__ == '__main__':ap = argparse.ArgumentParser()ap.add_argument("-i", "--image", required=False, default=r"lr/Infrared.jpg", help="红外图像路径")ap.add_argument("-v", "--visualize", required=False, default=r"rgb/Zoom.jpg", help="可见光图像路径")ap.add_argument("-o", "--output", required=False, default=r"output", help="输出文件夹路径")args = vars(ap.parse_args())# 读取红外图像/灰度化/边缘检测template = cv2.imread(args["image"])template = cv2.cvtColor(template, cv2.COLOR_BGR2GRAY)template = cv2.Canny(template, 50, 200)(tH, tW) = template.shape[:2]# 读取可见光图像image = cv2.imread(args["visualize"])# image = cv2.resize(image, (tW, tH))gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)found = Nonefor scale in np.linspace(0.2, 1.0, 20)[::-1]:# 多尺度缩小可见光图像resized = cv2.resize(gray, (int(gray.shape[1] * scale), int(gray.shape[0] * scale)))r = gray.shape[1] / float(resized.shape[1])# 若缩小的尺度小于红外图像尺寸,跳出循环if resized.shape[0] < tH or resized.shape[1] < tW:break# 对缩小之后的图像进行边缘检测edged = cv2.Canny(resized, 50, 200)'''cv2.matchTemplate  模板匹配:param 检测图像 模板 模板匹配方法:returns 相似度结果矩阵:(宽: image.shape[1]-template.shape[1]+1; 高:image.shape[0]-template.shape[0]+1)'''result = cv2.matchTemplate(edged, template, cv2.TM_CCOEFF)# print("edged_shape:{}".format(edged.shape))  # (3888, 5184)# print("template_shape:{}".format(template.shape))  # (512, 640)# print("result_shape:{}".format(result.shape))  # (3377, 4545)# 查找模板中最大相似度值和位置_, maxVal, _, maxLoc = cv2.minMaxLoc(result)# 可选:查看匹配图范围# clone = np.dstack([edged, edged, edged])# clone = edged# cv2.rectangle(clone, (maxLoc[0], maxLoc[1]), (maxLoc[0] + tW, maxLoc[1] + tH), (0, 0, 255), 2)# cv2.imwrite(os.path.join(args["output"], "Visualize", "visualize.jpg"), clone)# 若在裁剪区域找到相似度更高的匹配点,更新foundif found is None or maxVal > found[0]:found = (maxVal, maxLoc, r)# 得到匹配度最高的矩阵框坐标_, maxLoc, r = found(startX, startY) = (int(maxLoc[0] * r), int(maxLoc[1] * r))(endX, endY) = (int((maxLoc[0] + tW) * r), int((maxLoc[1] + tH) * r))# cv2.rectangle(image, (startX, startY), (endX, endY), (0, 0, 255), 2)crop_img = image[startY:endY, startX:endX]# cv2.imshow("Image", image)# cv2.imshow("Crop Image", crop_img)# cv2.waitKey(0)thermal_image = cv2.imread(args["image"], cv2.IMREAD_COLOR)# cropping out the matched part of the thermal imagecrop_img = cv2.resize(crop_img, (thermal_image.shape[1], thermal_image.shape[0]))# 创建输出文件夹存储裁剪后的可见光影像if not os.path.exists(os.path.join(args["output"], "process")):os.mkdir(os.path.join(args["output"], "process"))# 保存图片cv2.imwrite(os.path.join(args["output"], "process", os.path.basename(args["visualize"])), crop_img)# 创建对比图像final = np.concatenate((crop_img, thermal_image), axis=1)if not os.path.exists(os.path.join(args["output"], "results")):os.mkdir(os.path.join(args["output"], "results"))cv2.imwrite(os.path.join(args["output"], "results", os.path.basename(args["visualize"])), final)

这篇关于【图像配准】Canny边缘检测+模板配准红外可见光双路数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/278670

相关文章

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

SpringBoot集成EasyPoi实现Excel模板导出成PDF文件

《SpringBoot集成EasyPoi实现Excel模板导出成PDF文件》在日常工作中,我们经常需要将数据导出成Excel表格或PDF文件,本文将介绍如何在SpringBoot项目中集成EasyPo... 目录前言摘要简介源代码解析应用场景案例优缺点分析类代码方法介绍测试用例小结前言在日常工作中,我们经

基于Python开发一个图像水印批量添加工具

《基于Python开发一个图像水印批量添加工具》在当今数字化内容爆炸式增长的时代,图像版权保护已成为创作者和企业的核心需求,本方案将详细介绍一个基于PythonPIL库的工业级图像水印解决方案,有需要... 目录一、系统架构设计1.1 整体处理流程1.2 类结构设计(扩展版本)二、核心算法深入解析2.1 自

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon