2021-1-2 吴恩达-C5 序列模型-w1 循环序列模型(课后编程2-Character level language model-Dinosaurus Island 字符级语言模型-恐龙岛)

本文主要是介绍2021-1-2 吴恩达-C5 序列模型-w1 循环序列模型(课后编程2-Character level language model-Dinosaurus Island 字符级语言模型-恐龙岛),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原文链接
如果打不开,也可以复制链接到https://nbviewer.jupyter.org中打开。

循环序列模型 Character level language model-Dinosaurus Island 字符级语言模型-恐龙岛

  • 1 问题描述
    • 1.1 数据集和预处理
    • 1.2 模型概述
  • 2 构建模型中的模块
    • 2.1 梯度修剪
    • 2.2 采样
  • 3 构建语言模型
    • 3.1 梯度下降
    • 3.2 训练模型
  • 4 像莎士比亚那样写作
  • 5 全代码

欢迎来到恐龙岛!6500万年前,恐龙就存在了,在这次任务中它们又回来了。
你负责一项特殊任务。生物学研究人员正在创造新的恐龙品种,并将它们带到地球上,而你的工作就是给这些恐龙命名。如果一只恐龙不喜欢它的名字,它可能会发疯,所以明智地选择!
在这里插入图片描述

幸运的是,你学到了一些DL的知识,你将用它来避免起错名字。你的助手收集了一份他们能找到的所有恐龙名字的列表,并将它们汇编到这个数据集中。(点击前面的链接可以随意查看。)要创建新的恐龙名称,你将构建一个字符级语言模型来生成新名称。你的算法将学习不同的名称模式,并随机生成新名称。希望这个算法能让你和你的团队远离恐龙的愤怒!

完成本练习,你将学到

  • 如何存储文本数据以便使用RNN进行处理。
  • 如何通过在每个时间步对预测进行采样并将其传递给下一个RNN单元来合成数据
  • 如何构建字符级文本生成RNN
  • 为什么梯度修剪很重要?

我们将首先加载在rnn_utils中为你提供的一些函数。具体来说,您可以访问诸如rnn_forward和rnn_backward 之类的函数,这些函数等同于你在上一个任务中实现的函数。

import numpy as np
from utils import *
import random
from random import shuffle

1 问题描述

1.1 数据集和预处理

运行以下代码以读取恐龙名称的数据集,创建唯一字符(如a-z)的列表,并计算数据集和词汇表大小。

data = open('dinos.txt', 'r').read()
data= data.lower()
chars = list(set(data))
data_size, vocab_size = len(data), len(chars)
print('There are %d total characters and %d unique characters in your data.' % (data_size, vocab_size))

结果

There are 19909 total characters and 27 unique characters in your data.

字符是a-z(26个字符)加上“\n”(或换行符),在本作业中,它起着类似于我们在课程中讨论的(或“句尾”)标记的作用,只是在这里它表示恐龙名称的结尾,而不是句子的结尾。

在下面的代码中,我们创建一个python字典(即哈希表),将每个字符映射到0-26之间的索引。
我们还创建了第二个python字典,将每个索引映射回相应的字符。
这将帮助你找出哪个索引对应于softmax层的概率分布输出中的哪个字符。
在下面,char_to_ix和ix_to_char是python字典。

char_to_ix = { ch:i for i,ch in enumerate(sorted(chars)) }
ix_to_char = { i:ch for i,ch in enumerate(sorted(chars)) }
print(ix_to_char)

结果

{0: '\n', 1: 'a', 2: 'b', 3: 'c', 4: 'd', 5: 'e', 6: 'f', 7: 'g', 8: 'h', 9: 'i', 10: 'j', 11: 'k', 12: 'l', 13: 'm', 14: 'n', 15: 'o', 16: 'p', 17: 'q', 18: 'r', 19: 's', 20: 't', 21: 'u', 22: 'v', 23: 'w', 24: 'x', 25: 'y', 26: 'z'}

1.2 模型概述

你的模型将具有以下结构:

  • 初始化参数
  • 运行优化循环
    • 前向传播计算损失
    • 反向传播计算关于损失的梯度
    • 修剪梯度以免梯度爆炸
    • 用梯度下降更新规则更新参数
  • 返回学习好的参数

在这里插入图片描述
在每一个时间步,RNN都试图预测给定一个字符的下一个字符是什么。
数据集 X = ( x ⟨ 1 ⟩ , x ⟨ 2 ⟩ , . . . , x ⟨ T x ⟩ ) X = (x^{\langle 1 \rangle}, x^{\langle 2 \rangle}, ..., x^{\langle T_x \rangle}) X=(x1,x2,...,xTx)是一个列表类型的字符训练集,同时 Y = ( y ⟨ 1 ⟩ , y ⟨ 2 ⟩ , . . . , y ⟨ T x ⟩ ) Y = (y^{\langle 1 \rangle}, y^{\langle 2 \rangle}, ..., y^{\langle T_x \rangle}) Y=(y1,y2,...,yTx)在每个时间步 t t t亦是如此,因此, y ⟨ t ⟩ = x ⟨ t + 1 ⟩ y^{\langle t \rangle} = x^{\langle t+1 \rangle} yt=xt+1

2 构建模型中的模块

在本部分中,你将构建整个模型的两个重要模块

  • 梯度修剪:避免梯度爆炸
  • 取采样:一种用来产生字符的技术

然后应用这两个函数来构建模型。

2.1 梯度修剪

本节中你将实现一个clip函数,它将在优化循环中被调用。回想一下,你的整个循环结构通常由前向传播、成本计算、反向传博和参数更新组成。在更新参数之前,你将在需要时执行梯度剪裁,以确保梯度不会“爆炸”,这意味着使用过大的值。

在下面的练习中,你将实现一个函数clip,它输入梯度字典,并在需要时输出梯度的剪裁版本。有不同的方法来剪裁梯度;我们将使用一个简单的按元素剪裁的过程,其中梯度向量的每个元素都被剪裁到某个范围[-N,N]之间。一般来说,你将提供一个maxValue(比如10)。在本例中,

  • 如果梯度向量的任何分量大于10,则将其设置为10;
  • 如果梯度向量的任何分量小于-10,则将其设置为-10。
  • 如果它在-10和10之间,它不变。

在这里插入图片描述

练习:实现下面的函数返回你的裁剪后的梯度字典gradients。你的函数接受最大阈值并返回梯度的剪裁版本。你可以查看这个提示,了解如何在numpy中进行剪辑的示例

实现代码

### GRADED FUNCTION: clipdef clip(gradients, maxValue):'''Clips the gradients' values between minimum and maximum.使用maxValue来修剪梯度Arguments:gradients -- a dictionary containing the gradients "dWaa", "dWax", "dWya", "db", "dby"字典类型,包含了以下参数:"dWaa", "dWax", "dWya", "db", "dby"maxValue -- everything above this number is set to this number, and everything less than -maxValue is set to -maxValue阈值,把梯度值限制在[-maxValue, maxValue]内Returns: gradients -- a dictionary with the clipped gradients. 修剪后的梯度'''# 获取参数dWaa, dWax, dWya, db, dby = gradients['dWaa'], gradients['dWax'], gradients['dWya'], gradients['db'], gradients['dby']### START CODE HERE #### clip to mitigate exploding gradients, loop over [dWax, dWaa, dWya, db, dby]. (≈2 lines)# 梯度修剪for gradient in [dWax, dWaa, dWya, db, dby]:np.clip(gradient, -maxValue, maxValue, out=gradient)### END CODE HERE ###gradients = {"dWaa": dWaa, "dWax": dWax, "dWya": dWya, "db": db, "dby": dby}return gradients

测试一下

np.random.seed(3)
dWax = np.random.randn(5,3)*10
dWaa = np.random.randn(5,5)*10
dWya = np.random.randn(2,5)*10
db = np.random.randn(5,1)*10
dby = np.random.randn(2,1)*10
gradients = {

这篇关于2021-1-2 吴恩达-C5 序列模型-w1 循环序列模型(课后编程2-Character level language model-Dinosaurus Island 字符级语言模型-恐龙岛)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/278354

相关文章

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

Go语言中json操作的实现

《Go语言中json操作的实现》本文主要介绍了Go语言中的json操作的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录 一、jsOChina编程N 与 Go 类型对应关系️ 二、基本操作:编码与解码 三、结构体标签(Struc

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

Linux五种IO模型的使用解读

《Linux五种IO模型的使用解读》文章系统解析了Linux的五种IO模型(阻塞、非阻塞、IO复用、信号驱动、异步),重点区分同步与异步IO的本质差异,强调同步由用户发起,异步由内核触发,通过对比各模... 目录1.IO模型简介2.五种IO模型2.1 IO模型分析方法2.2 阻塞IO2.3 非阻塞IO2.4

python语言中的常用容器(集合)示例详解

《python语言中的常用容器(集合)示例详解》Python集合是一种无序且不重复的数据容器,它可以存储任意类型的对象,包括数字、字符串、元组等,下面:本文主要介绍python语言中常用容器(集合... 目录1.核心内置容器1. 列表2. 元组3. 集合4. 冻结集合5. 字典2.collections模块

基于Go语言开发一个 IP 归属地查询接口工具

《基于Go语言开发一个IP归属地查询接口工具》在日常开发中,IP地址归属地查询是一个常见需求,本文将带大家使用Go语言快速开发一个IP归属地查询接口服务,有需要的小伙伴可以了解下... 目录功能目标技术栈项目结构核心代码(main.go)使用方法扩展功能总结在日常开发中,IP 地址归属地查询是一个常见需求:

Java中字符编码问题的解决方法详解

《Java中字符编码问题的解决方法详解》在日常Java开发中,字符编码问题是一个非常常见却又特别容易踩坑的地方,这篇文章就带你一步一步看清楚字符编码的来龙去脉,并结合可运行的代码,看看如何在Java项... 目录前言背景:为什么会出现编码问题常见场景分析控制台输出乱码文件读写乱码数据库存取乱码解决方案统一使

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

MySQL的JDBC编程详解

《MySQL的JDBC编程详解》:本文主要介绍MySQL的JDBC编程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、前置知识1. 引入依赖2. 认识 url二、JDBC 操作流程1. JDBC 的写操作2. JDBC 的读操作总结前言本文介绍了mysq