Rust实现基于Tokio的限制内存占用的channel

2023-10-24 20:44

本文主要是介绍Rust实现基于Tokio的限制内存占用的channel,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Rust实现基于Tokio的限制内存占用的channel

简介

本文介绍如何基于tokio的channel实现一个限制内存占用的channel。

Tokio提供了多种协程间同步的接口,用于在不同的协程中同步数据。
常用的channel有两种:boundedunbounded,其中ubbounded的channel可以无限的发送数据,而bounded的channel则有限的发送数据。两种channel都没有对自身的内存占用做出限制。

异步网络编程中常用一个channel连接两个task,其中业务task与业务交互:将要发送的数据发送到channel,而网络task与操作系统交互:从channel中接收数据并写入socket。单有时候带宽有限或者对端接收速率过慢时,而网络task从channel中接收的速度小于业务task向channel中发送的速度时,会造成大量的数据阻塞在channel中,如果不对channel的占用内存做限制,则会造成内存占用过多甚至进程被OOM

实现

  1. 获取数据大小

    要想限制channel总的内存占用,必须要直到每个数据的大小。比较常见的作法是所有需要发送到channel的内容都必须实现一个Trait,此Trait中定义了一个get_size方法,用于获取数据的大小。

    pub trait GetSize {/// get total sizefn get_size(&self) -> usize;
    }
    

    要发送的内容必须实现GetSize的Trait,并实现get_size方法。注意:get_size方法获取到的大小需包括栈空间和堆空间,例如:

     struct MyData {data: Vec<u8>,}impl GetSize for MyData {fn get_size(&self) -> usize {return std::mem::size_of::<MyData>() + self.data.len();//stack size + heap size}}
    
  2. 创建SizedSenderSizedReceiver

    SizedSenderSizedReceiver都可以基于tokio的UnboundedSenderUnboundedReceiver实现。在tokio的基础上,需要共享一个条件变量用于在sender和receiver之间同步当前是否还有可用空间。

       
    pub struct SizedSender<T: GetSize> {inner: mpsc::UnboundedSender<T>,size_semaphore: Arc<(Semaphore, usize)>,
    }   pub struct SizedReceiver<T: GetSize> {inner: mpsc::UnboundedReceiver<T>,size_semaphore: Arc<(Semaphore, usize)>,
    }/// Limit space usage but not limit the number of messages, bytes_size must bigger than 0.
    pub fn sized_channel<T: GetSize>(bytes_size: usize) -> (SizedSender<T>, SizedReceiver<T>) {let (tx, rx) = mpsc::unbounded_channel::<T>();let semaphore = Arc::new((Semaphore::new(bytes_size), bytes_size));(SizedSender::new(tx, semaphore.clone()),SizedReceiver::new(rx, semaphore),)
    }          
  3. SizedSender实现

    发送端发送时需要调用get_size方法获取数据的大小,然后调用Semaphore::available_permits方法获取可用空间,如果可用空间大于数据大小,则发送成功,否则发送失败。

    impl<T: GetSize> SizedSender<T> {pub fn new(inner: mpsc::UnboundedSender<T>, size_semaphore: Arc<(Semaphore, usize)>) -> Self {Self {inner,size_semaphore,}}fn do_send(&self,message: T,permits: Option<SemaphorePermit<'_>>,) -> Result<(), SendError<T>> {match self.inner.send(message) {Ok(r) => {if let Some(permits) = permits {permits.forget();}Ok(r)}Err(e) => {log::debug!("send value error!");Err(e)}}}pub async fn send(&self, message: T) -> Result<(), SendError<T>> {let message_size = message.get_size();if message_size > self.size_semaphore.1 {return Err(SendError(message));}let size = match u32::try_from(message_size) {Ok(size) => size,Err(_) => {return Err(SendError(message));}};if self.size_semaphore.0.available_permits() < size as usize {// The buffer is about to be depleted, sending may be blocked.}let permits = match self.size_semaphore.0.acquire_many(size).await {Ok(perimits) => Some(perimits),Err(_) => {return Err(SendError(message));}};self.do_send(message, permits)}}
    
  4. SizedReceiver的实现

    接收端接收时需要调用get_size方法获取数据的大小,然后将相应大小的permits还给信号量即可。

    impl<T: GetSize> SizedReceiver<T> {
    pub fn new(inner: mpsc::UnboundedReceiver<T>, size_semaphore: Arc<(Semaphore, usize)>) -> Self {Self {inner,size_semaphore,}
    }pub async fn recv(&mut self) -> Option<T> {self.inner.recv().await.map(|r| {let message_size = r.get_size();self.size_semaphore.0.add_permits(message_size);r})
    }
    }
  5. 其他

    在上述实现的基础上,还可以实现更多方法,比如try_sendtry_recv等。

这篇关于Rust实现基于Tokio的限制内存占用的channel的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/277655

相关文章

HTML5实现的移动端购物车自动结算功能示例代码

《HTML5实现的移动端购物车自动结算功能示例代码》本文介绍HTML5实现移动端购物车自动结算,通过WebStorage、事件监听、DOM操作等技术,确保实时更新与数据同步,优化性能及无障碍性,提升用... 目录1. 移动端购物车自动结算概述2. 数据存储与状态保存机制2.1 浏览器端的数据存储方式2.1.

基于 HTML5 Canvas 实现图片旋转与下载功能(完整代码展示)

《基于HTML5Canvas实现图片旋转与下载功能(完整代码展示)》本文将深入剖析一段基于HTML5Canvas的代码,该代码实现了图片的旋转(90度和180度)以及旋转后图片的下载... 目录一、引言二、html 结构分析三、css 样式分析四、JavaScript 功能实现一、引言在 Web 开发中,

SpringBoot中使用Flux实现流式返回的方法小结

《SpringBoot中使用Flux实现流式返回的方法小结》文章介绍流式返回(StreamingResponse)在SpringBoot中通过Flux实现,优势包括提升用户体验、降低内存消耗、支持长连... 目录背景流式返回的核心概念与优势1. 提升用户体验2. 降低内存消耗3. 支持长连接与实时通信在Sp

Conda虚拟环境的复制和迁移的四种方法实现

《Conda虚拟环境的复制和迁移的四种方法实现》本文主要介绍了Conda虚拟环境的复制和迁移的四种方法实现,包括requirements.txt,environment.yml,conda-pack,... 目录在本机复制Conda虚拟环境相同操作系统之间复制环境方法一:requirements.txt方法

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源

springboot下载接口限速功能实现

《springboot下载接口限速功能实现》通过Redis统计并发数动态调整每个用户带宽,核心逻辑为每秒读取并发送限定数据量,防止单用户占用过多资源,确保整体下载均衡且高效,本文给大家介绍spring... 目录 一、整体目标 二、涉及的主要类/方法✅ 三、核心流程图解(简化) 四、关键代码详解1️⃣ 设置

Nginx 配置跨域的实现及常见问题解决

《Nginx配置跨域的实现及常见问题解决》本文主要介绍了Nginx配置跨域的实现及常见问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来... 目录1. 跨域1.1 同源策略1.2 跨域资源共享(CORS)2. Nginx 配置跨域的场景2.1

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

CSS实现元素撑满剩余空间的五种方法

《CSS实现元素撑满剩余空间的五种方法》在日常开发中,我们经常需要让某个元素占据容器的剩余空间,本文将介绍5种不同的方法来实现这个需求,并分析各种方法的优缺点,感兴趣的朋友一起看看吧... css实现元素撑满剩余空间的5种方法 在日常开发中,我们经常需要让某个元素占据容器的剩余空间。这是一个常见的布局需求

HTML5 getUserMedia API网页录音实现指南示例小结

《HTML5getUserMediaAPI网页录音实现指南示例小结》本教程将指导你如何利用这一API,结合WebAudioAPI,实现网页录音功能,从获取音频流到处理和保存录音,整个过程将逐步... 目录1. html5 getUserMedia API简介1.1 API概念与历史1.2 功能与优势1.3