通过热敏电阻计算温度(三)---Marlin实现分析

2023-10-24 14:44

本文主要是介绍通过热敏电阻计算温度(三)---Marlin实现分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录


通过热敏电阻计算温度(三)—Marlin实现分析

marlin固件温度的计算方法采用的是Steinhart-Hart方程计算的方式。首先通过python生成温度查表数据,单片机端可以直接使用查表的方式计算温度数据。

温度查表数据:
OVERSAMPLENR 的值为16,数组中的第一个值为ADC采样值的16倍。因为实际计算中的ADC值是采样16次的和

//专为stm32生成的温度查表
//在此有一点需要注意,这里的数值类型不能再用short类型了,若还用short类型会报一系列警告信息,
//同时要注意修改analog2temp(int raw, uint8_t e)函数,将与温度查表相关的类型short改为int类型
const int temptable_1[][2]  = { {  (91 * OVERSAMPLENR ),  300 }, {  (98 * OVERSAMPLENR ),  295 }, {  (105 * OVERSAMPLENR ),  290 }, {  (112 * OVERSAMPLENR ),  285 }, {  (120 * OVERSAMPLENR ),  280 }, {  (129 * OVERSAMPLENR ),  275 }, {  (139 * OVERSAMPLENR ),  270 }, {  (150 * OVERSAMPLENR ),  265 }, {  (161 * OVERSAMPLENR ),  260 }, {  (174 * OVERSAMPLENR ),  255 }, {  (188 * OVERSAMPLENR ),  250 }, {  (203 * OVERSAMPLENR ),  245 }, {  (220 * OVERSAMPLENR ),  240 }, {  (239 * OVERSAMPLENR ),  235 }, {  (259 * OVERSAMPLENR ),  230 }, {  (281 * OVERSAMPLENR ),  225 }, {  (306 * OVERSAMPLENR ),  220 }, {  (332 * OVERSAMPLENR ),  215 }, {  (362 * OVERSAMPLENR ),  210 }, {  (395 * OVERSAMPLENR ),  205 }, {  (431 * OVERSAMPLENR ),  200 }, {  (471 * OVERSAMPLENR ),  195 }, {  (515 * OVERSAMPLENR ),  190 }, {  (563 * OVERSAMPLENR ),  185 }, {  (616 * OVERSAMPLENR ),  180 }, {  (674 * OVERSAMPLENR ),  175 }, {  (739 * OVERSAMPLENR ),  170 }, {  (809 * OVERSAMPLENR ),  165 }, {  (886 * OVERSAMPLENR ),  160 }, {  (969 * OVERSAMPLENR ),  155 }, {  (1060 * OVERSAMPLENR ),  150 }, {  (1159 * OVERSAMPLENR ),  145 }, {  (1265 * OVERSAMPLENR ),  140 }, {  (1379 * OVERSAMPLENR ),  135 }, {  (1501 * OVERSAMPLENR ),  130 }, {  (1630 * OVERSAMPLENR ),  125 }, {  (1765 * OVERSAMPLENR ),  120 }, {  (1906 * OVERSAMPLENR ),  115 }, {  (2052 * OVERSAMPLENR ),  110 }, {  (2202 * OVERSAMPLENR ),  105 }, {  (2353 * OVERSAMPLENR ),  100 }, {  (2504 * OVERSAMPLENR ),   95 }, {  (2654 * OVERSAMPLENR ),   90 }, {  (2800 * OVERSAMPLENR ),   85 }, {  (2942 * OVERSAMPLENR ),   80 }, {  (3076 * OVERSAMPLENR ),   75 }, {  (3203 * OVERSAMPLENR ),   70 }, {  (3321 * OVERSAMPLENR ),   65 }, {  (3429 * OVERSAMPLENR ),   60 }, {  (3527 * OVERSAMPLENR ),   55 }, {  (3615 * OVERSAMPLENR ),   50 }, {  (3692 * OVERSAMPLENR ),   45 }, {  (3760 * OVERSAMPLENR ),   40 }, {  (3819 * OVERSAMPLENR ),   35 }, {  (3869 * OVERSAMPLENR ),   30 }, {  (3912 * OVERSAMPLENR ),   25 }, {  (3948 * OVERSAMPLENR ),   20 }, {  (3978 * OVERSAMPLENR ),   15 }, {  (4002 * OVERSAMPLENR ),   10 }, {  (4022 * OVERSAMPLENR ),    5 }, {  (4039 * OVERSAMPLENR ),    0 },};

根据温度查表数据将ADC采样值转换为温度数据的函数

// Derived from RepRap FiveD extruder::getTemperature()
// For hot end temperature measurement.//热端温度测量
static float analog2temp(int raw, uint8_t e) {  //将温度的adc值转换为对应的温度值uint8_t i;if(e >= EXTRUDERS) {SERIAL_ERROR_START;printf("%d",e);printf(" - Invalid extruder number !");printf("\n");kill();} if(heater_ttbl_map[e] != NULL) {float celsius = 0;int (*tt)[][2] = (int (*)[][2])(heater_ttbl_map[e]);for ( i=1; i<heater_ttbllen_map[e]; i++) {  //通过查表利用内差的方式估计挤出头目前的温度   if ((*tt)[i][0] > raw) {celsius = (*tt)[i-1][1] + (raw - (*tt)[i-1][0]) * (float)((*tt)[i][1] - (*tt)[i-1][1]) /(float)((*tt)[i][0] - (*tt)[i-1][0]);break;}}// Overflow: Set to last value in the tableif (i == heater_ttbllen_map[e]) celsius = (*tt)[i-1][1];return celsius; //热敏电阻测量的数据生成的温度值}return 0;//return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET; //热电偶测得的数据计算温度值
}

生成温度查表数据的python程序

#!/usr/bin/python
"""Thermistor Value Lookup Table GeneratorGenerates lookup to temperature values for use in a microcontroller in C format based on:
http://en.wikipedia.org/wiki/Steinhart-Hart_equationThe main use is for Arduino programs that read data from the circuit board described here:
http://reprap.org/wiki/Temperature_Sensor_v2.0Usage: python createTemperatureLookup.py [options]Options:-h, --help        show this help--rp=...          pull-up resistor--t1=ttt:rrr      low temperature temperature:resistance point (around 25 degC)--t2=ttt:rrr      middle temperature temperature:resistance point (around 150 degC)--t3=ttt:rrr      high temperature temperature:resistance point (around 250 degC)--num-temps=...   the number of temperature points to calculate (default: 36)
"""from math import *
import sys
import getopt"Constants"
ZERO   = 273.15                             # zero point of Kelvin scale
VADC   = 3.3                                  # ADC voltage
VCC    = 3.3                                  # supply voltage
ARES   = pow(2,12)                          # 10 Bit ADC resolution
VSTEP  = VADC / ARES                        # ADC voltage resolution
TMIN   = 0                                  # lowest temperature in table
TMAX   = 300                                # highest temperature in tableclass Thermistor:"Class to do the thermistor maths"def __init__(self, rp, t1, r1, t2, r2, t3, r3):l1 = log(r1)l2 = log(r2)l3 = log(r3)y1 = 1.0 / (t1 + ZERO)              # adjust scaley2 = 1.0 / (t2 + ZERO)y3 = 1.0 / (t3 + ZERO)x = (y2 - y1) / (l2 - l1)y = (y3 - y1) / (l3 - l1)c = (y - x) / ((l3 - l2) * (l1 + l2 + l3))b = x - c * (l1**2 + l2**2 + l1*l2)a = y1 - (b + l1**2 *c)*l1if c < 0:print "//"print "// WARNING: negative coefficient 'c'! Something may be wrong with the measurements! //"print "//"c = -cself.c1 = a                         # Steinhart-Hart coefficientsself.c2 = bself.c3 = cself.rp = rp                        # pull-up resistancedef resol(self, adc):"Convert ADC reading into a resolution"res = self.temp(adc)-self.temp(adc+1)return resdef voltage(self, adc):"Convert ADC reading into a Voltage"return adc * VSTEP                     # convert the 10 bit ADC value to a voltagedef resist(self, adc):"Convert ADC reading into a resistance in Ohms"r = self.rp * self.voltage(adc) / (VCC - self.voltage(adc)) # resistance of thermistorreturn rdef temp(self, adc):"Convert ADC reading into a temperature in Celcius"l = log(self.resist(adc))Tinv = self.c1 + self.c2*l + self.c3* l**3 # inverse temperaturereturn (1/Tinv) - ZERO              # temperaturedef adc(self, temp):"Convert temperature into a ADC reading"x = (self.c1 - (1.0 / (temp+ZERO))) / (2*self.c3)y = sqrt((self.c2 / (3*self.c3))**3 + x**2)r = exp((y-x)**(1.0/3) - (y+x)**(1.0/3))return (r / (self.rp + r)) * ARESdef main(argv):"Default values"t1 = 25                                 # low temperature in Kelvin (25 degC)r1 = 100000                             # resistance at low temperature (10 kOhm)t2 = 150                                # middle temperature in Kelvin (150 degC)r2 = 1641.9                             # resistance at middle temperature (1.6 KOhm)t3 = 250                                # high temperature in Kelvin (250 degC)r3 = 226.15                             # resistance at high temperature (226.15 Ohm)rp = 4700;                              # pull-up resistor (4.7 kOhm)num_temps = 61;                         # number of entries for look-up tabletry:opts, args = getopt.getopt(argv, "h", ["help", "rp=", "t1=", "t2=", "t3=", "num-temps="])except getopt.GetoptError as err:print  str(err)usage()sys.exit(2)for opt, arg in opts:if opt in ("-h", "--help"):usage()sys.exit()elif opt == "--rp":rp = int(arg)elif opt == "--t1":arg =  arg.split(':')t1 = float(arg[0])r1 = float(arg[1])elif opt == "--t2":arg =  arg.split(':')t2 = float(arg[0])r2 = float(arg[1])elif opt == "--t3":arg =  arg.split(':')t3 = float(arg[0])r3 = float(arg[1])elif opt == "--num-temps":num_temps = int(arg)t = Thermistor(rp, t1, r1, t2, r2, t3, r3)increment = int((ARES-1)/(num_temps-1));step = (TMIN-TMAX) / (num_temps-1)low_bound = t.temp(ARES-1);up_bound = t.temp(1);min_temp = int(TMIN if TMIN > low_bound else low_bound)max_temp = int(TMAX if TMAX < up_bound else up_bound)temps = range(max_temp, TMIN+step, step);print "// Thermistor lookup table for Marlin"print "// ./createTemperatureLookupMarlin.py --rp=%s --t1=%s:%s --t2=%s:%s --t3=%s:%s --num-temps=%s" % (rp, t1, r1, t2, r2, t3, r3, num_temps)print "// Steinhart-Hart Coefficients: a=%.15g, b=%.15g, c=%.15g " % (t.c1, t.c2, t.c3)print "// Theoretical limits of termistor: %.2f to %.2f degC" % (low_bound, up_bound)printprint "#define NUMTEMPS %s" % (len(temps))print "const long temptable[NUMTEMPS][2] = {"for temp in temps:adc = t.adc(temp)print "    {  (%d * OVERSAMPLENR ), %4s }%s // v=%s r=%s res=%s degC/count" % ((adc+0.5) , temp , \',' if temp != temps[-1] else ' ', \t.voltage(adc), \t.resist( adc), \t.resol(  adc) \)print "};"def usage():print __doc__if __name__ == "__main__":main(sys.argv[1:])

这篇关于通过热敏电阻计算温度(三)---Marlin实现分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/275893

相关文章

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499