C++前缀和算法的应用:石头游戏 VIII 原理源码测试用例

2023-10-24 13:28

本文主要是介绍C++前缀和算法的应用:石头游戏 VIII 原理源码测试用例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文涉及的基础知识点

C++算法:前缀和、前缀乘积、前缀异或的原理、源码及测试用例 包括课程视频

题目

Alice 和 Bob 玩一个游戏,两人轮流操作, Alice 先手 。
总共有 n 个石子排成一行。轮到某个玩家的回合时,如果石子的数目 大于 1 ,他将执行以下操作:
选择一个整数 x > 1 ,并且 移除 最左边的 x 个石子。
将 移除 的石子价值之 和 累加到该玩家的分数中。
将一个 新的石子 放在最左边,且新石子的值为被移除石子值之和。
当只剩下 一个 石子时,游戏结束。
Alice 和 Bob 的 分数之差 为 (Alice 的分数 - Bob 的分数) 。 Alice 的目标是 最大化 分数差,Bob 的目标是 最小化 分数差。
给你一个长度为 n 的整数数组 stones ,其中 stones[i] 是 从左边起 第 i 个石子的价值。请你返回在双方都采用 最优 策略的情况下,Alice 和 Bob 的 分数之差 。
示例 1:
输入:stones = [-1,2,-3,4,-5]
输出:5
解释:

  • Alice 移除最左边的 4 个石子,得分增加 (-1) + 2 + (-3) + 4 = 2 ,并且将一个价值为 2 的石子放在最左边。stones = [2,-5] 。
  • Bob 移除最左边的 2 个石子,得分增加 2 + (-5) = -3 ,并且将一个价值为 -3 的石子放在最左边。stones = [-3] 。
    两者分数之差为 2 - (-3) = 5 。
    示例 2:
    输入:stones = [7,-6,5,10,5,-2,-6]
    输出:13
    解释:
  • Alice 移除所有石子,得分增加 7 + (-6) + 5 + 10 + 5 + (-2) + (-6) = 13 ,并且将一个价值为 13 的石子放在最左边。stones = [13] 。
    两者分数之差为 13 - 0 = 13 。
    示例 3:
    输入:stones = [-10,-12]
    输出:-22
    解释:
  • Alice 只有一种操作,就是移除所有石子。得分增加 (-10) + (-12) = -22 ,并且将一个价值为 -22 的石子放在最左边。stones = [-22] 。
    两者分数之差为 (-22) - 0 = -22 。
    参数范围:
    n == stones.length
    2 <= n <= 105
    -104 <= stones[i] <= 104

分析

思路

dp[i]表示剩余i个石头时,(先手方分数-后手方分数)的最大值。计算dp[i]时,假定移除石头后,还剩j个,也就是总共(包括之前移除)移除m_c-j个。至少移除一个旧石头,故j的取值范围[0,i) 。cur = stones[0,m_c-j)个石头的价值和 - dp[j]。dp[i]等于cur的最大值。

x > 1

初始状态下,只能移除2个,不能移除1个。
非初始状态下,由于必定会移除新石头,所以移除一个旧石头就可以了。
也就是dp[m_c]时m_c-j不能等于1,也就是j不能m_c-1。j无此限制的取值范围是[0,m_c),加上此限制后就变成[0,m_c-1),即i < m_c-1

注意

题意:包括新石头,只剩一个石头的时候结束。我的理解:不包括新石头,没石头的时候结束。初始状态外,一定有新石头,所以两种等价。初始状态,且石头大于1时,两者等价,都是未结束。一个石头,两者不等价。但本题石头数>=2。所以在本题范围内等价。

怀疑

这个题目可能出错了,可能是不放新石头。这样需要技巧合并i。

代码

错误代码

错误原因:忽略了x>1。
class Solution {
public:
int stoneGameVIII(vector& stones) {
m_c = stones.size();
vector dp(m_c + 1);//dp[i]表示剩余i个石头时,(先手方分数-后手方分数)的最大值
//计算dp[i]时,假定移除石头后,还剩j个,也就是移除m_c-j个
// cur = stones[0,m_c-j)个石头的价值和 - dp[j]
vector vSum = { 0 };
for (const auto& n : stones)
{
vSum.emplace_back(n + vSum.back());
}
int iMax = vSum[m_c - 0]-dp[0];
for (int i = 1; i <= m_c; i++)
{
dp[i] = iMax;
iMax = max(iMax, vSum[m_c - i] - dp[i]);
}
return dp.back();
}
int m_c;
};

修正缺陷后

解决方法

class Solution {
public:int stoneGameVIII(vector<int>& stones) {m_c = stones.size();//dp[i]表示剩余i个石头时,(先手方分数-后手方分数)的最大值m_dp.resize(m_c + 1);//计算dp[i]时,假定移除石头后,还剩j个,也就是移除m_c-j个// j的取值范围[0,i) 且m_c-j>1// cur = stones[0,m_c-j)个石头的价值和 - dp[j]vector<int> vSum = { 0 };for (const auto& n : stones){vSum.emplace_back(n + vSum.back());}int iMax = vSum[m_c - 0]-m_dp[0];for (int i = 1; i <= m_c; i++){m_dp[i] = iMax;if (m_c - i > 1){iMax = max(iMax, vSum[m_c - i] - m_dp[i]);}}return m_dp.back();}int m_c;vector<int> m_dp;//dp[i]表示剩余i个石头时,(先手方分数-后手方分数)的最大值
};

测试用例

template
void Assert(const vector& v1, const vector& v2)
{
if (v1.size() != v2.size())
{
assert(false);
return;
}
for (int i = 0; i < v1.size(); i++)
{
assert(v1[i] == v2[i]);
}
}

template
void Assert(const T& t1, const T& t2)
{
assert(t1 == t2);
}

int main()
{
Solution slu;
vector stones;
int res = 0;
stones = { -1, 2, -3, 4, -5, 6 };
res = slu.stoneGameVIII(stones);
Assert(3, res);
Assert(vector{0, 3, 3, 3, 3, 3, 3}, slu.m_dp);
stones = { -3,-5,3 };
res = slu.stoneGameVIII(stones);
Assert(-3, res);
Assert(vector{0, -5,-3,-3}, slu.m_dp);
stones = { -1, 2, -3, 4, -5 };
res = slu.stoneGameVIII(stones);
Assert(5, res);
Assert(vector{0, -3, 5, 5, 5, 5}, slu.m_dp);
stones = { -10,-12 };
res = slu.stoneGameVIII(stones);
Assert(-22, res);
Assert(vector{0, -22,-22}, slu.m_dp);

//CConsole::Out(res);

}

2023年2月旧代码

class Solution {
public:
int stoneGameVIII(vector& stones) {
m_c = stones.size();
vector preSum;
int iSum = 0;
for (const auto& s : stones)
{
iSum += s;
preSum.push_back(iSum);
}
vector dp(m_c);
dp.back() = preSum.back();
for (int i = m_c - 2; i >= 1; i–)
{
dp[i] = max(dp[i + 1], preSum[i] - dp[i + 1]);
}
return dp[1];
}
int m_c;
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《闻缺陷则喜算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

| 鄙人想对大家说的话
|
|-|
|闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。|
| 墨家名称的来源:有所得以墨记之。 |
|如果程序是一条龙,那算法就是他的是睛|

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17

这篇关于C++前缀和算法的应用:石头游戏 VIII 原理源码测试用例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/275461

相关文章

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

PostgreSQL简介及实战应用

《PostgreSQL简介及实战应用》PostgreSQL是一种功能强大的开源关系型数据库管理系统,以其稳定性、高性能、扩展性和复杂查询能力在众多项目中得到广泛应用,本文将从基础概念讲起,逐步深入到高... 目录前言1. PostgreSQL基础1.1 PostgreSQL简介1.2 基础语法1.3 数据库

C++ STL-string类底层实现过程

《C++STL-string类底层实现过程》本文实现了一个简易的string类,涵盖动态数组存储、深拷贝机制、迭代器支持、容量调整、字符串修改、运算符重载等功能,模拟标准string核心特性,重点强... 目录实现框架一、默认成员函数1.默认构造函数2.构造函数3.拷贝构造函数(重点)4.赋值运算符重载函数

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N