Forget-free Continual Learning with Winning Subnetworks论文阅读+代码解析

本文主要是介绍Forget-free Continual Learning with Winning Subnetworks论文阅读+代码解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本篇文章是来自ICML2022上的一篇,而且是由之前出名的FedWEIT的团队进行研究的,因此这篇文章中也存在着相似的影子,论文地址点这里。

一. 背景(简要介绍)

持续学习又被称为增量式学习,要求不断地接受数据样本并且不会产生灾难性遗忘。最广泛的3种类型为:基于正则化的持续学习,基于记忆重塑的持续学习以及基于动态架构的持续学习。然而,上述的方法都会造成新的内存压力,特别是对于记忆重塑和动态架构。因此,现在又产生了一种基于修建的方法,如下:
在这里插入图片描述
可以发现这些方法(a-c)都将模型进行了一些切分,让每个任务有对应的网络进行训练。

本文中,作者运用了彩票假设(Lottery Ticket Hypothesis),为每一个任务考虑一个子模型进行训练。

补充:彩票假设大概意思是当一个人买了足够多的彩票之后,其中必定有一张彩票是中奖的。对应于神经网络就是,在庞大的参数面前,我们可以从中提取一部分的参数形成子网络,而这个子网络能够表现的和主网络一样好。

二. Forget-Free Continual Learning with Winning SubNetworks

问题定义: 在持续学习中,存在着 T T T个任务,假设第 t t t个任务的数据集表示为 D t = { x i , t , y i , t } i = 1 n t \mathcal{D}_t=\{x_{i,t},y_{i,t}\}^{n_t}_{i=1} Dt={xi,t,yi,t}i=1nt,其中 n t n_t nt表示对应的样本数。假设神经网络为为 f ( . ; θ ) f(.;\theta) f(.;θ),那么在任务 t t t上我们优化目标为:
θ ∗ = min ⁡ θ 1 n t ∑ i = 1 n t L ( f ( x i , t ; θ ) , y i , t ) \theta^*=\min_{\theta}\frac{1}{n_t}\sum_{i=1}^{n_t}\mathcal{L}(f(x_{i,t};\theta),y_{i,t}) θ=θminnt1i=1ntL(f(xi,t;θ),yi,t)
为了留出学习未来任务的空间,可以找到获得同等甚至更好性能的子网络。给定网络参数 θ \theta θ,设定一个最优二进制掩码(mask) m ∗ m^* m用于提取最优的子网络,并且要求子网络的参数小于主网络,具体来说可以描述为:
m t ∗ = min ⁡ m t ∈ { 0 , 1 } ∣ θ ∣ 1 n t ∑ i = 1 n t L ( f ( x i , t ; θ ⊙ m t ) , y i , t ) − C subject to  ∣ m t ∗ ∣ ≤ c m_t^*=\min_{m_t\in\{0,1\}^{|\theta|}}\frac{1}{n_t}\sum_{i=1}^{n_t}\mathcal{L}(f(x_{i,t};\theta \odot m_t),y_{i,t}) -C \\ \text{subject to}\ |m_t^*| \leq c mt=mt{0,1}θminnt1i=1ntL(f(xi,t;θmt),yi,t)Csubject to mtc
其中 C = L ( f ( x i , t ; θ ) , y i , t ) C=\mathcal{L}(f(x_{i,t};\theta),y_{i,t}) C=L(f(xi,t;θ),yi,t)

2.1 Winning SubNetworks

假设可以给每一个网络权重 w w w进行打分,分值越高代表该网路对任务的贡献越大,之后就可以进行评估(这里作者其实就是大概介绍了他们的思路以及为啥要用子网络,没有什么特别的信息,具体的方法在下面介绍)而实现子网络,具体的图如下:
在这里插入图片描述
值得注意的是,新的任务也会用到之前任务学习过的参数,但为了不破坏之前的参数,因此不会选择去更新旧的参数。

2.2 具体的优化过程

有了子网络后,我们的优化目标变为:
min ⁡ θ , s L ( θ ⊙ m t ; D t ) \min_{\theta,s}\mathcal{L}(\theta \odot m_t;\mathcal{D}_t) θ,sminL(θmt;Dt)
此处 s s s表示给每个权重的打分。然而,这种普通的优化过程存在两个问题:(1)在新任务的训练时更新所有 θ \theta θ会干扰为以前任务分配的权重,(2)我们无法使用梯度更新分值 s s s。为了解决第一个问题,这里使用选择性地更新参数。具体来说,假设 M t − 1 = ∨ i = 1 t − 1 m i M_{t-1}=∨^{t-1}_{i=1}m_i Mt1=i=1t1mi表示之前所有任务的掩码集合,那么更新变为:
θ ← θ − η ( ∂ L ∂ θ ⊙ ( 1 − M t − 1 ) ) \theta \leftarrow \theta\ -\ \eta(\frac{\partial \mathcal{L}}{\partial \theta} \odot(1-M_{t-1})) θθ  η(θL(1Mt1))
这样就能保证冻结住那些已经被训练过的参数。对于第二个问题,可以使用top-c%进行分数的打分(这里到具体代码解释)。整体的算法如下:
在这里插入图片描述

2.3 掩码的编码过程

可以发现,上述需要存放掩码,这里作者使用每7位形成一个ASCII编码进行存储,减少存储量。(举个例子,假如现在掩码为0011000101000001010…,我们每7个进行存储,第一个就是0110000转换成十进制为42,对应于就是数字0),这样能大大减少空间。

三. 代码解析

作者的代码点这里。
上述两个关键的就是,实现子网络,这里代码为:在这里插入图片描述

这里是作者重写了一个全连接层,红框标出的就是掩码和参数的过程,那么对于每一个网络掩码的是如何确定的呢?可以发现其对应于GetSubnetFaster里面,我们具体来看看:
在这里插入图片描述
首先对应于forward来,这里scores对应的就是全连接层的参数 w w w(这里要取绝对值),sparsity是一个提前定义好的量,表示为稀疏度,在0-1之间,在进行计算的时候,首先运行到percentile中,我们使用稀疏度*参数个数得到k,然后根据k计算网络中的第k_val大的数字(也就是求k分数),之后再将比k_val大的变为1其余变为0。因此,其实这里就是用了最标准的剪枝算法,选择前k个最大的权值,而剩余的舍弃。这里就是作者利用提到的分数的计算规则,而注意到backward,在计算梯度的时候是直接将传入的梯度g直接传出,而在一个任务训练多轮中,每一次都会变化参数而导致分位数变化从而实现掩码的变化
第二个部分就简单了,那就是每次更新的参数只能是那些没有用过的,代码如下(train函数里面):
在这里插入图片描述
也就是依次找到那些被用过的参数,让他们的grad变为0即可。最后就是训练完一个任务后把他的掩码和之前的掩码合并:
在这里插入图片描述
这次的论文想法还是挺行的,而且和FedWEIT一样都使用了掩码,欢迎大家提出意见~

这篇关于Forget-free Continual Learning with Winning Subnetworks论文阅读+代码解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/275284

相关文章

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

一文解析C#中的StringSplitOptions枚举

《一文解析C#中的StringSplitOptions枚举》StringSplitOptions是C#中的一个枚举类型,用于控制string.Split()方法分割字符串时的行为,核心作用是处理分割后... 目录C#的StringSplitOptions枚举1.StringSplitOptions枚举的常用

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

MyBatis延迟加载与多级缓存全解析

《MyBatis延迟加载与多级缓存全解析》文章介绍MyBatis的延迟加载与多级缓存机制,延迟加载按需加载关联数据提升性能,一级缓存会话级默认开启,二级缓存工厂级支持跨会话共享,增删改操作会清空对应缓... 目录MyBATis延迟加载策略一对多示例一对多示例MyBatis框架的缓存一级缓存二级缓存MyBat

前端缓存策略的自解方案全解析

《前端缓存策略的自解方案全解析》缓存从来都是前端的一个痛点,很多前端搞不清楚缓存到底是何物,:本文主要介绍前端缓存的自解方案,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、为什么“清缓存”成了技术圈的梗二、先给缓存“把个脉”:浏览器到底缓存了谁?三、设计思路:把“发版”做成“自愈”四、代码

Java集合之Iterator迭代器实现代码解析

《Java集合之Iterator迭代器实现代码解析》迭代器Iterator是Java集合框架中的一个核心接口,位于java.util包下,它定义了一种标准的元素访问机制,为各种集合类型提供了一种统一的... 目录一、什么是Iterator二、Iterator的核心方法三、基本使用示例四、Iterator的工

Java 线程池+分布式实现代码

《Java线程池+分布式实现代码》在Java开发中,池通过预先创建并管理一定数量的资源,避免频繁创建和销毁资源带来的性能开销,从而提高系统效率,:本文主要介绍Java线程池+分布式实现代码,需要... 目录1. 线程池1.1 自定义线程池实现1.1.1 线程池核心1.1.2 代码示例1.2 总结流程2. J

JS纯前端实现浏览器语音播报、朗读功能的完整代码

《JS纯前端实现浏览器语音播报、朗读功能的完整代码》在现代互联网的发展中,语音技术正逐渐成为改变用户体验的重要一环,下面:本文主要介绍JS纯前端实现浏览器语音播报、朗读功能的相关资料,文中通过代码... 目录一、朗读单条文本:① 语音自选参数,按钮控制语音:② 效果图:二、朗读多条文本:① 语音有默认值:②