SlowFast-入门1-动作识别-部署与测试

2023-10-24 12:11

本文主要是介绍SlowFast-入门1-动作识别-部署与测试,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

SlowFast-部署与测试

目录

  • SlowFast-部署与测试
    • 简介
    • 安装部署
    • 测试
      • 准备pkl文件并上传
      • 上传ava.json文件
      • 准备yaml文件
      • 准备素材
      • 运行
    • 运行结果
    • 后记——不重要的痛苦的过程

SlowFast系列:
SlowFast-入门1-动作识别-部署与测试
Slowfast-入门2-学论文【SlowFast Networks for Video Recognition】

简介

GitHub:
https://github.com/facebookresearch/SlowFast
官方给的运行示例图是这样的。
特点是:识别的动作为原子动作;每个人同一时刻可能被识别出多个动作。
在这里插入图片描述

安装部署

部署平台:极链AI云

部署机器:Tesla V100
部署环境:Pytorch 1.6.0, Python 3.7, CUDA 10.2
这里注意!!!!!!!!
选择Pytorch框架版本可以为1.6.0的机器,这样才能选择到3.7的Python。
由于Detectron2需要Pytorch>=1.7,所以之后会需要再升Pytorch的版本。
但一定要选择Python为3.7!!!!!!!!
要先保证Python为3.7!!!!!!!!在这里插入图片描述

安装过程:

pip install 'git+https://github.com/facebookresearch/fvcore'
pip install simplejson
conda install av -c conda-forge
y
pip install -U iopath
pip install psutil
pip install moviepy
pip install tensorboard
pip install pytorchvideo
pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html
git clone https://github.com/facebookresearch/detectron2.git
pip install -e detectron2
git clone https://github.com/facebookresearch/SlowFast.git
cd SlowFast
python setup.py build develop

安装结束后,成功安装好了fvcore、detectron2、slowfast。
有提示以下错误。
error: Could not find suitable distribution for Requirement.parse(‘PIL’)
但是我看安装教程中,没有特意提到这个PIL库,而且用pip list查看的时候,已经有Pillow库了。
Pillow、PIL更多了解
然后后续的推断测试中也没影响,爷累了,所以先不管他。

安装完后,再用pip list查看:

fvcore                             0.1.5
detectron2                         0.5                 /root/detectron2
sklearn                            0.0
slowfast                           1.0                 /root/SlowFast
torch                              1.7.1+cu110
torchaudio                         0.7.2
torchvision                        0.8.2+cu110

测试

基本安装部署了,接下来要怎么用呢。
Getting Started with PySlowFast
This document provides a brief intro of launching jobs in PySlowFast for training and testing. Before launching any job, make sure you have properly installed the PySlowFast following the instruction in README.md and you have prepared the dataset following DATASET.md with the correct format.

准备pkl文件并上传

看了一下DATASET.md里的介绍,有Kinetics(132GB)、AVA(好像是500GB+)、Charades、Something-Something V2。
下载、处理,都很艰难。
博主试过按照AVA的准备方法准备。下载、裁剪、提取帧、下载标注文件(这个还好)。原始视频19GB多的,整套流程下来电脑跑了两天多,昼夜不停的跑。
【以后有机会再写对这个部分AVA数据集的处理训练方法】

所以,先用人家官方给的,玩玩。在MODEL_ZOO.md,下载了如下的模型。
(这个表的解释,之后在解读论文的时候,可能再解释解释)
下载下来的文件名为:【SLOWFAST_32x2_R101_50_50.pkl】
下载后上传到云端。我是上传到/root/SlowFast路径。
在这里插入图片描述

上传ava.json文件

制作ava.json文件内容如下,记录了80个动作类别。
上传至/root/SlowFast/demo/AVA路径下。

{"bend/bow (at the waist)": 0, "crawl": 1, "crouch/kneel": 2, "dance": 3, "fall down": 4, "get up": 5, "jump/leap": 6, "lie/sleep": 7, "martial art": 8, "run/jog": 9, "sit": 10, "stand": 11, "swim": 12, "walk": 13, "answer phone": 14, "brush teeth": 15, "carry/hold (an object)": 16, "catch (an object)": 17, "chop": 18, "climb (e.g., a mountain)": 19, "clink glass": 20, "close (e.g., a door, a box)": 21, "cook": 22, "cut": 23, "dig": 24, "dress/put on clothing": 25, "drink": 26, "drive (e.g., a car, a truck)": 27, "eat": 28, "enter": 29, "exit": 30, "extract": 31, "fishing": 32, "hit (an object)": 33, "kick (an object)": 34, "lift/pick up": 35, "listen (e.g., to music)": 36, "open (e.g., a window, a car door)": 37, "paint": 38, "play board game": 39, "play musical instrument": 40, "play with pets": 41, "point to (an object)": 42, "press": 43, "pull (an object)": 44, "push (an object)": 45, "put down": 46, "read": 47, "ride (e.g., a bike, a car, a horse)": 48, "row boat": 49, "sail boat": 50, "shoot": 51, "shovel": 52, "smoke": 53, "stir": 54, "take a photo": 55, "text on/look at a cellphone": 56, "throw": 57, "touch (an object)": 58, "turn (e.g., a screwdriver)": 59, "watch (e.g., TV)": 60, "work on a computer": 61, "write": 62, "fight/hit (a person)": 63, "give/serve (an object) to (a person)": 64, "grab (a person)": 65, "hand clap": 66, "hand shake": 67, "hand wave": 68, "hug (a person)": 69, "kick (a person)": 70, "kiss (a person)": 71, "lift (a person)": 72, "listen to (a person)": 73, "play with kids": 74, "push (another person)": 75, "sing to (e.g., self, a person, a group)": 76, "take (an object) from (a person)": 77, "talk to (e.g., self, a person, a group)": 78, "watch (a person)": 79}

准备yaml文件

在/root/SlowFast/demo/AVA路径下,对【SLOWFAST_32x2_R101_50_50.yaml】文件进行修改:

  1. TRAIN下的CHECKPOINT_FILE_PATH,修改成上一步中下载并上传到云端的pkl文件的位置。
  2. TENSORBOARD、MODEL_VIS、TOPK这三行注释掉。
  3. 在DEMO下,注释掉WEBCAM,增加INPUT_VIDEO、OUTPUT_FILE,赋值的路径、名称可自定义。
  4. 在DEMO下,LABEL_FILE_PATH写ava.json的位置。
    在这里插入图片描述

在这里插入图片描述

准备素材

准备mp4的测试素材文件,上传到对应的文件夹。
我在/root/SlowFast路径下,创建了Video_Input、Video_Output文件夹。
在Video_Input文件夹下放了个命名为1.mp4的素材。

运行

在/root/SlowFast路径下,执行:

python tools/run_net.py --cfg demo/AVA/SLOWFAST_32x2_R101_50_50.yaml

在这里插入图片描述

运行结果

这次运行了三个视频片段。
第一个视频片段来源于《初来乍到》美剧。
第二、三个视频是成龙的打戏,下载自b站。虽然有一个视频有点糊,但是能识别出martial art就很感人。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

后记——不重要的痛苦的过程

一开始我在这样的环境里配置:
Pytorch 1.7.0, Python 3.8.8, CUDA 11.0
与上面步骤是一样的(这个不需要升pytorch的那句),
最后安装slowfast的时候,也会出现PIL的问题
但是重点不是这个
运行推断的时候会出现:

Traceback (most recent call last):File "tools/run_net.py", line 6, in <module>from slowfast.utils.misc import launch_jobFile "/root/SlowFast/slowfast/utils/misc.py", line 21, in <module>from slowfast.models.batchnorm_helper import SubBatchNorm3dFile "/root/SlowFast/slowfast/models/__init__.py", line 6, in <module>from .video_model_builder import ResNet, SlowFast  # noqaFile "/root/SlowFast/slowfast/models/video_model_builder.py", line 18, in <module>from . import head_helper, resnet_helper, stem_helperFile "/root/SlowFast/slowfast/models/head_helper.py", line 8, in <module>from detectron2.layers import ROIAlign
ImportError: cannot import name 'ROIAlign' from 'detectron2.layers' (unknown location)

感谢这位博主的这篇博客:
https://blog.csdn.net/WhiffeYF/article/details/113527759
让我还是回去从Python3.7开始配,即使安装detectron2的时候,要先将Pytorch升级为1.7.0,但是就不会出现这个难搞的错误了。

还有升级为Pytorch1.7的时候,用的是这句:

pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html

因为当时,单纯升级pytorch为1.7,不同时将cuda10.2升级为11的时候,会出现Could not run ‘torchvision::nms’这个问题。
幸好这个我之前遇到过解决过了。
在这篇博客:
https://blog.csdn.net/weixin_41793473/article/details/118574493?spm=1001.2014.3001.5501

前面提到的PIL的那个问题:

Installed /root/SlowFast
Processing dependencies for slowfast==1.0
Searching for sklearn
Reading https://pypi.org/simple/sklearn/
Downloading https://files.pythonhosted.org/packages/1e/7a/dbb3be0ce9bd5c8b7e3d87328e79063f8b263b2b1bfa4774cb1147bfcd3f/sklearn-0.0.tar.gz#sha256=e23001573aa194b834122d2b9562459bf5ae494a2d59ca6b8aa22c85a44c0e31
Best match: sklearn 0.0
Processing sklearn-0.0.tar.gz
Writing /tmp/easy_install-bhbw6vsc/sklearn-0.0/setup.cfg
Running sklearn-0.0/setup.py -q bdist_egg --dist-dir /tmp/easy_install-bhbw6vsc/sklearn-0.0/egg-dist-tmp-2gs9d87i
file wheel-platform-tag-is-broken-on-empty-wheels-see-issue-141.py (for module wheel-platform-tag-is-broken-on-empty-wheels-see-issue-141) not found
file wheel-platform-tag-is-broken-on-empty-wheels-see-issue-141.py (for module wheel-platform-tag-is-broken-on-empty-wheels-see-issue-141) not found
file wheel-platform-tag-is-broken-on-empty-wheels-see-issue-141.py (for module wheel-platform-tag-is-broken-on-empty-wheels-see-issue-141) not found
warning: install_lib: 'build/lib' does not exist -- no Python modules to installcreating /opt/conda/lib/python3.8/site-packages/sklearn-0.0-py3.8.egg
Extracting sklearn-0.0-py3.8.egg to /opt/conda/lib/python3.8/site-packages
Adding sklearn 0.0 to easy-install.pth fileInstalled /opt/conda/lib/python3.8/site-packages/sklearn-0.0-py3.8.egg
Searching for PIL
Reading https://pypi.org/simple/PIL/
No local packages or working download links found for PIL
error: Could not find suitable distribution for Requirement.parse('PIL')

这篇关于SlowFast-入门1-动作识别-部署与测试的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/275089

相关文章

Python基于微信OCR引擎实现高效图片文字识别

《Python基于微信OCR引擎实现高效图片文字识别》这篇文章主要为大家详细介绍了一款基于微信OCR引擎的图片文字识别桌面应用开发全过程,可以实现从图片拖拽识别到文字提取,感兴趣的小伙伴可以跟随小编一... 目录一、项目概述1.1 开发背景1.2 技术选型1.3 核心优势二、功能详解2.1 核心功能模块2.

Python验证码识别方式(使用pytesseract库)

《Python验证码识别方式(使用pytesseract库)》:本文主要介绍Python验证码识别方式(使用pytesseract库),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全... 目录1、安装Tesseract-OCR2、在python中使用3、本地图片识别4、结合playwrigh

Python中OpenCV与Matplotlib的图像操作入门指南

《Python中OpenCV与Matplotlib的图像操作入门指南》:本文主要介绍Python中OpenCV与Matplotlib的图像操作指南,本文通过实例代码给大家介绍的非常详细,对大家的学... 目录一、环境准备二、图像的基本操作1. 图像读取、显示与保存 使用OpenCV操作2. 像素级操作3.

python多线程并发测试过程

《python多线程并发测试过程》:本文主要介绍python多线程并发测试过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、并发与并行?二、同步与异步的概念?三、线程与进程的区别?需求1:多线程执行不同任务需求2:多线程执行相同任务总结一、并发与并行?1、

Web技术与Nginx网站环境部署教程

《Web技术与Nginx网站环境部署教程》:本文主要介绍Web技术与Nginx网站环境部署教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Web基础1.域名系统DNS2.Hosts文件3.DNS4.域名注册二.网页与html1.网页概述2.HTML概述3.

Nginx使用Keepalived部署web集群(高可用高性能负载均衡)实战案例

《Nginx使用Keepalived部署web集群(高可用高性能负载均衡)实战案例》本文介绍Nginx+Keepalived实现Web集群高可用负载均衡的部署与测试,涵盖架构设计、环境配置、健康检查、... 目录前言一、架构设计二、环境准备三、案例部署配置 前端 Keepalived配置 前端 Nginx

ubuntu如何部署Dify以及安装Docker? Dify安装部署指南

《ubuntu如何部署Dify以及安装Docker?Dify安装部署指南》Dify是一个开源的大模型应用开发平台,允许用户快速构建和部署基于大语言模型的应用,ubuntu如何部署Dify呢?详细请... Dify是个不错的开源LLM应用开发平台,提供从 Agent 构建到 AI workflow 编排、RA

ubuntu16.04如何部署dify? 在Linux上安装部署Dify的技巧

《ubuntu16.04如何部署dify?在Linux上安装部署Dify的技巧》随着云计算和容器技术的快速发展,Docker已经成为现代软件开发和部署的重要工具之一,Dify作为一款优秀的云原生应用... Dify 是一个基于 docker 的工作流管理工具,旨在简化机器学习和数据科学领域的多步骤工作流。它

Nginx部署React项目时重定向循环问题的解决方案

《Nginx部署React项目时重定向循环问题的解决方案》Nginx在处理React项目请求时出现重定向循环,通常是由于`try_files`配置错误或`root`路径配置不当导致的,本文给大家详细介... 目录问题原因1. try_files 配置错误2. root 路径错误解决方法1. 检查 try_f

POI从入门到实战轻松完成EasyExcel使用及Excel导入导出功能

《POI从入门到实战轻松完成EasyExcel使用及Excel导入导出功能》ApachePOI是一个流行的Java库,用于处理MicrosoftOffice格式文件,提供丰富API来创建、读取和修改O... 目录前言:Apache POIEasyPoiEasyExcel一、EasyExcel1.1、核心特性