STM32的CRL CRH ODR BRR BSRR寄存器(逐句解析)

2023-10-24 08:59

本文主要是介绍STM32的CRL CRH ODR BRR BSRR寄存器(逐句解析),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 一 端口配置寄存器(GPIOx_CRL GPIOx_CRH

这两个寄存器都是 GPIO 口配置寄存器, CRL 控制端口的低八位, CRH 控制端口的
高八位。寄存器的作用是控制 GPIO 口的工作模式和工作速度。
每组 GPIO 下有 16 IO 口,一个寄存器共 32 位,每 4 个位控制 1 IO如图
所以才需要两个寄存器完成。
比如 GPIOA_CRL 的复位值是 0x44444444 4 位为一个单位都是 0100,一共八个0100 ,以寄存器低四位说明一下。
首先位 1 0 00 即:设置  PA0 为输入模式,如图
3 2 01 即:设置为浮空输入模式,如图
所以假如 GPIOA_CRL 的值是 0x44444444 ,那么 PA0~PA7 都是设置为输入模式,而
且是浮空输入模式。也就是说每一个框内设置的都是00:输入模式   01:浮空输入模式
上面这 2 个配置寄存器就是用来配置 GPIO 的相关工作模式和工作速度,它们通过不同的
配置组合方法,就决定我们所说的 8 种工作模式。
00 :模拟输入模式
01 :浮空输入模式 ( 复位后的状态 )
10 :上拉 / 下拉输入模式
在输出模式 (MODE[1:0]>00)
00 :通用推挽输出模式
01 :通用开漏输出模式
10 :复用功能推挽输出模式
11 :复用功能开漏输出模式
当MODE选择00,CNF为选择10时,代表着上拉/下拉输入模式。到底是上拉还是下拉呢?此时需要PxODR(端口输出数据寄存器)来确定,0为下拉输入,1为上拉输入。

二 端口输出数据寄存器(GPIOx_ODR

该寄存器用于控制 GPIOx 的输出高电平或者低电平。
也就是说既能控制管脚为高电平,也能控制管脚为低电平。管脚对于位写1,GPIO 管脚为高电平,写 0 则为低电平。不过缺点是:会因中断而打断,关闭中断明显会延迟或丢失一事件的捕获,所以控制GPIO的状态最好还是用BSRR和BRR。

三 端口输入数据寄存器(GPIOx_IDR

IDR寄存器低16位,每个位控制该组GPIO口的一个IO口,对应的是该IO口的输入电平。在输入模式下,可以读取I/O端口的电平值;在输出模式下,也可以读取I/O端口的电平值(在开漏输出时,读取到的I/O端口的电平值,不一定就是输出的电平值)

四 端口置位/复位寄存器(GPIOx_BSRR

该寄存器也用于控制 GPIOx 的输出高电平或者低电平。
问:既然ODR 和 BSRR都用于控制GPIOx的输出高电平或低电平,为什么有了 ODR 寄存器,还要这个 BSRR 寄存器呢?
答:因为 BSRR 是只写权限,而 ODR 是可读可写权限。BSRR 寄存器 32 位有效。
对于低 16 位( 0- 15),往相应的位写 1(BSy=1) ,那么对应的 IO 口会输出高电平,往相应的位写 0(BSy=0) , 对 IO 口没有任何影响,
16 位( 16-31 ),对相应的位写 1(BRy=1) 会输出低电平,写 0(BRy=0) 没有任何影响, y=0~15 。 也就是说,对于 BSRR 寄存器,你写 0 的话,对 IO 口电平是没有任何影响的。
因此要设置某个IO 口电平,只需要相关位设置为 1 即可。而 ODR 寄存器,要设置某个 IO 口电平, 首先需要读出来 ODR 寄存器的值,然后对整个 ODR 寄存器重新赋值来达到设置某个或者某些 IO 口的目的,而 BSRR 寄存器直接设置即可,这在多任务实时操作系统中作用很大。 BSRR寄存器还有一个好处,就是 BSRR 寄存器改变引脚状态的时候,不会被中断打断,而 ODR 寄存器有被中断打断的风险。

五 端口位清除寄存器(GPIOx_BRR) 

该寄存器只能改变管脚状态为低电平。 往相应的位写 1(BRy=1) ,那么对应的 IO 口会输出低电平,往相应的位写 0(BSy=0) , 对 IO 口没有任何影响,

GPIOx为(0..15)中任意接口
有了GPIOx->BRR清除寄存器,并且与GPIOx->BSRR高16为功能相同
假如你想在一个操作中对GPIOE的位1置'1',位15置'0',则使用BSRR非常方便:
GPIOE->BSRR = 0x80000002;
低16位中的0002将位1置‘1’( 低 16 ,对相应的位写 1 ,那么对应的 IO 口会输出高电平)高16位中的8000将位15置清零( 16 ,对相应的位写 1,那么对应的 IO 口会输出低电平),一步就可以做到。
如果没有BSRR的高16位,则要分2次操作,结果造成位1和位15的变化不同步
GPIOE->BSRR = 0x02;
GPIOE->BRR = 0x8000;

这篇关于STM32的CRL CRH ODR BRR BSRR寄存器(逐句解析)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/274094

相关文章

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

Golang HashMap实现原理解析

《GolangHashMap实现原理解析》HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持高效的插入、查找和删除操作,:本文主要介绍GolangH... 目录HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

java解析jwt中的payload的用法

《java解析jwt中的payload的用法》:本文主要介绍java解析jwt中的payload的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java解析jwt中的payload1. 使用 jjwt 库步骤 1:添加依赖步骤 2:解析 JWT2. 使用 N

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

Java 正则表达式URL 匹配与源码全解析

《Java正则表达式URL匹配与源码全解析》在Web应用开发中,我们经常需要对URL进行格式验证,今天我们结合Java的Pattern和Matcher类,深入理解正则表达式在实际应用中... 目录1.正则表达式分解:2. 添加域名匹配 (2)3. 添加路径和查询参数匹配 (3) 4. 最终优化版本5.设计思

使用Java将DOCX文档解析为Markdown文档的代码实现

《使用Java将DOCX文档解析为Markdown文档的代码实现》在现代文档处理中,Markdown(MD)因其简洁的语法和良好的可读性,逐渐成为开发者、技术写作者和内容创作者的首选格式,然而,许多文... 目录引言1. 工具和库介绍2. 安装依赖库3. 使用Apache POI解析DOCX文档4. 将解析

Java字符串处理全解析(String、StringBuilder与StringBuffer)

《Java字符串处理全解析(String、StringBuilder与StringBuffer)》:本文主要介绍Java字符串处理全解析(String、StringBuilder与StringBu... 目录Java字符串处理全解析:String、StringBuilder与StringBuffer一、St