XGBOOST(Extreme Gradient Boosting)算法原理详细总结

2023-10-24 07:50

本文主要是介绍XGBOOST(Extreme Gradient Boosting)算法原理详细总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        上篇我们对传统的GBDT算法原理进行了探讨,本篇我们来探讨一个具有王者地位的算法:XGBOOST(Extreme Gradient Boosting
)。XGBOOST是来自于华盛顿大学的一个研究项目,2016年由陈天奇和Carlos Guestrin在KDD上发表:XGBoost: A Scalable Tree Boosting System。自此之后,XGBOOST不仅在kaggle比赛中赢得一席之地,而且也推动了工业领域的一些前沿应用的发展。XGBOOST是我们处理中小型结构化数据必须要掌握的一个杀手锏。
        本篇我们主要参考陈天奇博士介绍XGBOOST的PPT:Boosted Trees 。

1)CART回归树

        CART回归树既可以处理分类任务又可以处理回归任务。CART算法对训练样本集的每个特征递归的进行二分判断,将特征空间划分为有限的单元,每个单元具有一定的权重。简单的可以认为,CART回归树是一个叶子节点具有权重的二叉决策树。CART回归树有两个特点:

  • 决策规则和决策树是一样的;
  • 决策树的每个叶子节点都包含一个权重;

下图就是一个回归决策树的示例:
在这里插入图片描述
        假如某决策树的叶子节点数目为 T T T,每个叶子节点的权重为 w → = { w 1 , w 2 , . . . w T } \overrightarrow{w}=\left\{w_1,w_2,...w_T\right\} w ={w1,w2,...wT},样本 x x x落在叶节点 q q q中,决策树模型 f ( x ) f(x) f(x)可以定义为:
f t ( x ) = w q ( x ) w ∈ w → , q : R d → { 1 , 2 , . . . T } f_t(x) = w_{q(x)} \quad w \in \overrightarrow{w},q:R^d\rightarrow \left\{1,2,...T\right\} ft(x)=wq(x)ww ,q:Rd{1,2,...T}
        从上式中可以看出,决策树的两个核心为:树的结构 q q q,叶节点的权重 w w w。确定树的结构和叶节点的权重便可以确定一颗决策树。
        在决策树算法原理中我们了解到,决策树比较容易过拟合,因此会对决策树进行剪枝操作。那么我们该如何衡量决策树的复杂度呢?我们可以使用,树的深度,叶节点数量,叶子节点权重的 L 2 L2 L2正则等。这里我们使用叶节点的数量和叶子节点权重的 L 2 L2 L2正则表示决策树模型的复杂度,数学表达式为:
Ω ( f t ) = γ T + 1 2 λ ∑ j = 1 T w j 2 \Omega(f_t) =\gamma T+\frac{1}{2} \lambda \sum_{j=1}^Tw_j^2 Ω(ft)=γT+21λj=1Twj2
其中, T T T为叶节点的个数, w w w为叶节点所对应的权重, γ \gamma γ为收缩系数, λ \lambda λ L 2 L2 L2平滑系数。下图即为一个决策树模型复杂度的示例:
在这里插入图片描述

2)XGBOOST目标函数

        XGBOOST基于Boosting框架,它采用的是前向优化算法,即从前往后,逐渐建立基模型来优化逼近目标函数,具体过程如下:
y ^ i ( 0 ) = 0 \hat y_i^{(0)}=0 y^i(0)=0
y ^ i ( 1 ) = f 1 ( x i ) = y ^ i ( 0 ) + f 1 ( x i ) \hat y_i^{(1)}=f_1(x_i)=\hat y_i^{(0)} +f_1(x_i) y^i(1)=f1(xi)=y^i(0)+f1(xi)
y ^ i ( 2 ) = f 1 ( x i ) + f 2 ( x i ) = y ^ i ( 1 ) + f 2 ( x i ) \hat y_i^{(2)}=f_1(x_i) + f_2(x_i)=\hat y_i^{(1)} +f_2(x_i) y^i(2)=f1(xi)+f2(xi)=y^i(1)+f2(xi)
. . . ... ...
y ^ i ( t ) = ∑ k = 1 t f k ( x i ) = y ^ i ( t − 1 ) + f t ( x i ) \hat y_i^{(t)}=\sum_{k=1}^tf_k(x_i)=\hat y_i^{(t-1)} +f_t(x_i) y^i(t)=k=1tfk(xi)=y^i(t1)+ft(xi)
        从上式中,我们可以看出,每一步我们都是要训练一个新的基模型 f t ( x i ) f_t(x_i) ft(xi),那么我们的目标就是让训练的新模型使得误差最小,即目标函数为:
O b j ( t ) = ∑ i = 1 n l ( y i , y ^ i ) + ∑ i = 1 t Ω ( f i ) Obj^{(t)}=\sum_{i=1}^nl(y_i,\hat y_i) +\sum_{i=1}^t\Omega(f_i) Obj(t)=i=1nl(yi,y^i)+i=1tΩ(fi)
= ∑ i = 1 n l ( y i , y ^ i ( t − 1 ) + f t ( x i ) ) + Ω ( f t ) + c o n s t a n t =\sum_{i=1}^nl(y_i,\hat y_i^{(t-1)} +f_t(x_i))+\Omega(f_t)+constant =i=1nl(yi,y^i(t1)+ft(xi))+Ω(ft)+constant
其中 Ω ( f t ) \Omega(f_t) Ω(ft)为模型复杂度,用来防止模型过拟合,平衡模型偏差和方差的。
        由泰勒二阶展开式可知:
f ( x + Δ x ) ≈ f ( x ) + f ′ ( x ) Δ x + 1 2 f ′ ′ ( x ) Δ x 2 f(x+\Delta x)\approx f(x)+f'(x)\Delta x+\frac{1}{2}f''(x)\Delta x^2 f(x+Δx)f(x)+f(x)Δx+21f

这篇关于XGBOOST(Extreme Gradient Boosting)算法原理详细总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/273777

相关文章

CSS中的Static、Relative、Absolute、Fixed、Sticky的应用与详细对比

《CSS中的Static、Relative、Absolute、Fixed、Sticky的应用与详细对比》CSS中的position属性用于控制元素的定位方式,不同的定位方式会影响元素在页面中的布... css 中的 position 属性用于控制元素的定位方式,不同的定位方式会影响元素在页面中的布局和层叠关

在Windows上使用qemu安装ubuntu24.04服务器的详细指南

《在Windows上使用qemu安装ubuntu24.04服务器的详细指南》本文介绍了在Windows上使用QEMU安装Ubuntu24.04的全流程:安装QEMU、准备ISO镜像、创建虚拟磁盘、配置... 目录1. 安装QEMU环境2. 准备Ubuntu 24.04镜像3. 启动QEMU安装Ubuntu4

SpringBoot整合Flowable实现工作流的详细流程

《SpringBoot整合Flowable实现工作流的详细流程》Flowable是一个使用Java编写的轻量级业务流程引擎,Flowable流程引擎可用于部署BPMN2.0流程定义,创建这些流程定义的... 目录1、流程引擎介绍2、创建项目3、画流程图4、开发接口4.1 Java 类梳理4.2 查看流程图4

SQL Server数据库死锁处理超详细攻略

《SQLServer数据库死锁处理超详细攻略》SQLServer作为主流数据库管理系统,在高并发场景下可能面临死锁问题,影响系统性能和稳定性,这篇文章主要给大家介绍了关于SQLServer数据库死... 目录一、引言二、查询 Sqlserver 中造成死锁的 SPID三、用内置函数查询执行信息1. sp_w

Python UV安装、升级、卸载详细步骤记录

《PythonUV安装、升级、卸载详细步骤记录》:本文主要介绍PythonUV安装、升级、卸载的详细步骤,uv是Astral推出的下一代Python包与项目管理器,主打单一可执行文件、极致性能... 目录安装检查升级设置自动补全卸载UV 命令总结 官方文档详见:https://docs.astral.sh/

Python包管理工具核心指令uvx举例详细解析

《Python包管理工具核心指令uvx举例详细解析》:本文主要介绍Python包管理工具核心指令uvx的相关资料,uvx是uv工具链中用于临时运行Python命令行工具的高效执行器,依托Rust实... 目录一、uvx 的定位与核心功能二、uvx 的典型应用场景三、uvx 与传统工具对比四、uvx 的技术实

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

SQL中JOIN操作的条件使用总结与实践

《SQL中JOIN操作的条件使用总结与实践》在SQL查询中,JOIN操作是多表关联的核心工具,本文将从原理,场景和最佳实践三个方面总结JOIN条件的使用规则,希望可以帮助开发者精准控制查询逻辑... 目录一、ON与WHERE的本质区别二、场景化条件使用规则三、最佳实践建议1.优先使用ON条件2.WHERE用

SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程

《SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程》LiteFlow是一款专注于逻辑驱动流程编排的轻量级框架,它以组件化方式快速构建和执行业务流程,有效解耦复杂业务逻辑,下面给大... 目录一、基础概念1.1 组件(Component)1.2 规则(Rule)1.3 上下文(Conte