Janus: Data-Centric MoE 通讯成本分析(2)

2023-10-24 02:52

本文主要是介绍Janus: Data-Centric MoE 通讯成本分析(2),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章链接:Janus: A Unified Distributed Training Framework for Sparse Mixture-of-Experts Models

发表会议: ACM SIGCOMM 2023 (计算机网络顶会)

系统学习:Janus: 逆向思维,以数据为中心的MoE训练范式(1)

目录

  • 前言
  • 通讯成本分析
    • 1. Expert Parallelism and all-to-all
    • 2. Traffic Comparison between D-C. and E-C.
    • 3. Communication Efficiency Analysis
      • A. Forward Phase
      • B. Backward Phase
      • C. Ratio measure
  • Be Janus

前言

在之前的blog中,我们学习了Janus的理论基础和模型搭建。基于专家的规模小于数据规模的假设,作者得到了Data-Centric的思想灵感,并验证了算法的有效性。
通过Data-Centric这一范式思路和巧妙的读取测略,Janus极大的减少了算法的通讯成本。这篇blog将从数学的角度定量解读Janus是如何降低通讯开销的。

通讯成本分析

1. Expert Parallelism and all-to-all

在这里插入图片描述
一个MoE模型的尺寸可能会大到超过单个gpu的能力。为了在gpu上训练一个大规模的MoE模型,专家并行(Expert Parallelism,EP)被提出并得到广泛应用。

右图显示了EP的概念。专家并行是将专家层划分为几个部分,并分配给GPU。每个GPU中都有专家层的专家,不同的GPU中有不同的专家。对于MoE模型的其他部分(如attention layer和Gate),每个GPU持有一个独立的副本

在这里插入图片描述
目前EP的实现默认是以专家为中心的。图(a)说明了以专家为中心的训练过程。当MoE块处理token序列时,gate需要为每个token分配专家,而token由gate分发到承载分配专家的gpu。

这种token到gpu的分发是由一个all-to-all通信原语完成的,因为由gpu生成的令牌的目标gpu很可能包括所有的gpu。token被指定的专家处理后,需要将结果发送回其原始的gpu,这需要再次进行all-to-all通信。由于MoE模型通常具有多个MoE块,因此MoE模型的训练可能涉及到多次的all-to-all通信操作。


2. Traffic Comparison between D-C. and E-C.

模型
参数
MoE-BertMoE-GPTMoE-Transformer-xl
Batch size B B B25625664
Seq-lenth S S S12864512
Top-K in Gate242
Expert dim. H H H768768256
MoE Block4112
Total block121212
Expert num16    3216    3216    32
GPU num16    3216    3216    32
Model Size(B)0.42   0.730.23   0.310.11   0.21
E-C. Traffic(GB)6   91.5   2.256   9
D-C. Traffic(GB)0.56   1.690.14   0.420.19   0.56

上表展示了以专家为中心的范式(E-C.)和数据中心范式(D-C.)的模型配置和通讯成本大小。
可以看到,在相同的模型配置下,D-C.的通讯量明显低于E-C.


3. Communication Efficiency Analysis

由于整个系统的通信瓶颈在于节点间通信而非节点内通信,故将节点间通信量作为衡量训练系统潜在通信效率的指标。

记号含义
n n n设备数量
m m m每个设备的工作进程
E E E每个工作进程的专家数量
H H H向专家输入的token的维度
T T T工作进程生成的token数
k k k门参数 top-K
B B B每个工作进程的训练任务的批量大小
S S S训练任务的序列长度

A. Forward Phase

在MoE模型中,每个Expert通常是一个由两个线性层组成的前馈网络(FFN)。对于一个FFN模块,第一层包括一个形状为 H ∗ 4 H H*4H H4H 的矩阵,第二层包括一个形状为 4 H ∗ H 4H*H 4HH 的矩阵。因此,一个FFN模块的大小为 8 H 2 8H^{2} 8H2

每个工作进程都有专家,每台设备就有专家。由于每台设备都需要将这些专家广播给其他 n − 1 n−1 n1 台设备,因此在MoE块的训练过程中,D-C.的通讯量为:
C o m m D C = 8 H 2 E m ( n − 1 ) Comm_{DC}=8H^{2}Em(n-1) CommDC=8H2Em(n1)

E-C.的训练系统中,专家之间的token分配通常是不平衡的。完成通信所需的时间取决于发送/接收数据量最大的设备。显然,非平衡分布下的通信时间几乎总是比平衡分布下的通信时间长

现在计算E-C.的训练系统中要传输的token大小,即节点间通信量。每个工作进程生成token,然后一个 m-worker (GPU)设备可以生成 m T mT mT 个token。

在token均衡分配的假设下,token被发送到其他设备的百分比为 n − 1 n \frac{n-1}{n} nn1。在E-C.中,MoE型块需要在前向计算阶段执行all-to-all通信操作。因此,MoE块中以E-C.的通信量为:
C o m m E C = 2 m H T ⋅ n − 1 n Comm_{EC}=2mHT\cdot \frac{n-1}{n} CommEC=2mHTnn1


B. Backward Phase

对于后向阶段,在E-C.中,系统需要传输生成梯度所需的所有中间结果,并且这个量等于它在前向阶段中发送的token的量

D-C.中,系统可以重用在前向阶段提取和缓存的专家。在专家模块计算出梯度后,梯度应该被发送回原始工作进程。梯度的大小与拉取的专家模型相同,通信方向相反。

此外,同一个专家在一台设备上的多个梯度被减少和合并,然后被送回。因此,在D-C.中,后向阶段中的通讯量也等于前向阶段中的通讯量


C. Ratio measure

在分析了两种模式的通讯量后,文章定义了一个度量 R R R 来评估 D-C. 的理论增益,它是两种范式下节点间通信量的比率:
R = C o m m E C C o m m D C = T 4 n H E R=\frac{Comm_{EC}}{Comm_{DC}}=\frac{T}{4nHE} R=CommDCCommEC=4nHET

给定训练参数可以计算出token的数量 T T T,包括批大小 B B B、序列长度 S S S 以及与相关的Gate参数 top-K: k k k T = B S k T=BSk T=BSk 于是有:
R = C o m m E C C o m m D C = B S k 4 n H E R=\frac{Comm_{EC}}{Comm_{DC}}=\frac{BSk}{4nHE} R=CommDCCommEC=4nHEBSk

R > 1 R>1 R>1 表明D-C.效率优于E-C.效率。


Be Janus

Janus是一个以专家为中心的范式和以数据为中心的范式的统一框架。Janus在混合专家模型模型的训练开始前进行评估。

对于其中 R ≤ 1 R\le 1 R1 的MoE块,Janus默认使用专家中心范式。
对于其中 R ≥ 1 R\ge 1 R1 的MoE块,Janus将使用以数据为中心的范式。

这篇关于Janus: Data-Centric MoE 通讯成本分析(2)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/272252

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

Java中最全最基础的IO流概述和简介案例分析

《Java中最全最基础的IO流概述和简介案例分析》JavaIO流用于程序与外部设备的数据交互,分为字节流(InputStream/OutputStream)和字符流(Reader/Writer),处理... 目录IO流简介IO是什么应用场景IO流的分类流的超类类型字节文件流应用简介核心API文件输出流应用文

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

MySQL中读写分离方案对比分析与选型建议

《MySQL中读写分离方案对比分析与选型建议》MySQL读写分离是提升数据库可用性和性能的常见手段,本文将围绕现实生产环境中常见的几种读写分离模式进行系统对比,希望对大家有所帮助... 目录一、问题背景介绍二、多种解决方案对比2.1 原生mysql主从复制2.2 Proxy层中间件:ProxySQL2.3