Janus: Data-Centric MoE 通讯成本分析(2)

2023-10-24 02:52

本文主要是介绍Janus: Data-Centric MoE 通讯成本分析(2),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章链接:Janus: A Unified Distributed Training Framework for Sparse Mixture-of-Experts Models

发表会议: ACM SIGCOMM 2023 (计算机网络顶会)

系统学习:Janus: 逆向思维,以数据为中心的MoE训练范式(1)

目录

  • 前言
  • 通讯成本分析
    • 1. Expert Parallelism and all-to-all
    • 2. Traffic Comparison between D-C. and E-C.
    • 3. Communication Efficiency Analysis
      • A. Forward Phase
      • B. Backward Phase
      • C. Ratio measure
  • Be Janus

前言

在之前的blog中,我们学习了Janus的理论基础和模型搭建。基于专家的规模小于数据规模的假设,作者得到了Data-Centric的思想灵感,并验证了算法的有效性。
通过Data-Centric这一范式思路和巧妙的读取测略,Janus极大的减少了算法的通讯成本。这篇blog将从数学的角度定量解读Janus是如何降低通讯开销的。

通讯成本分析

1. Expert Parallelism and all-to-all

在这里插入图片描述
一个MoE模型的尺寸可能会大到超过单个gpu的能力。为了在gpu上训练一个大规模的MoE模型,专家并行(Expert Parallelism,EP)被提出并得到广泛应用。

右图显示了EP的概念。专家并行是将专家层划分为几个部分,并分配给GPU。每个GPU中都有专家层的专家,不同的GPU中有不同的专家。对于MoE模型的其他部分(如attention layer和Gate),每个GPU持有一个独立的副本

在这里插入图片描述
目前EP的实现默认是以专家为中心的。图(a)说明了以专家为中心的训练过程。当MoE块处理token序列时,gate需要为每个token分配专家,而token由gate分发到承载分配专家的gpu。

这种token到gpu的分发是由一个all-to-all通信原语完成的,因为由gpu生成的令牌的目标gpu很可能包括所有的gpu。token被指定的专家处理后,需要将结果发送回其原始的gpu,这需要再次进行all-to-all通信。由于MoE模型通常具有多个MoE块,因此MoE模型的训练可能涉及到多次的all-to-all通信操作。


2. Traffic Comparison between D-C. and E-C.

模型
参数
MoE-BertMoE-GPTMoE-Transformer-xl
Batch size B B B25625664
Seq-lenth S S S12864512
Top-K in Gate242
Expert dim. H H H768768256
MoE Block4112
Total block121212
Expert num16    3216    3216    32
GPU num16    3216    3216    32
Model Size(B)0.42   0.730.23   0.310.11   0.21
E-C. Traffic(GB)6   91.5   2.256   9
D-C. Traffic(GB)0.56   1.690.14   0.420.19   0.56

上表展示了以专家为中心的范式(E-C.)和数据中心范式(D-C.)的模型配置和通讯成本大小。
可以看到,在相同的模型配置下,D-C.的通讯量明显低于E-C.


3. Communication Efficiency Analysis

由于整个系统的通信瓶颈在于节点间通信而非节点内通信,故将节点间通信量作为衡量训练系统潜在通信效率的指标。

记号含义
n n n设备数量
m m m每个设备的工作进程
E E E每个工作进程的专家数量
H H H向专家输入的token的维度
T T T工作进程生成的token数
k k k门参数 top-K
B B B每个工作进程的训练任务的批量大小
S S S训练任务的序列长度

A. Forward Phase

在MoE模型中,每个Expert通常是一个由两个线性层组成的前馈网络(FFN)。对于一个FFN模块,第一层包括一个形状为 H ∗ 4 H H*4H H4H 的矩阵,第二层包括一个形状为 4 H ∗ H 4H*H 4HH 的矩阵。因此,一个FFN模块的大小为 8 H 2 8H^{2} 8H2

每个工作进程都有专家,每台设备就有专家。由于每台设备都需要将这些专家广播给其他 n − 1 n−1 n1 台设备,因此在MoE块的训练过程中,D-C.的通讯量为:
C o m m D C = 8 H 2 E m ( n − 1 ) Comm_{DC}=8H^{2}Em(n-1) CommDC=8H2Em(n1)

E-C.的训练系统中,专家之间的token分配通常是不平衡的。完成通信所需的时间取决于发送/接收数据量最大的设备。显然,非平衡分布下的通信时间几乎总是比平衡分布下的通信时间长

现在计算E-C.的训练系统中要传输的token大小,即节点间通信量。每个工作进程生成token,然后一个 m-worker (GPU)设备可以生成 m T mT mT 个token。

在token均衡分配的假设下,token被发送到其他设备的百分比为 n − 1 n \frac{n-1}{n} nn1。在E-C.中,MoE型块需要在前向计算阶段执行all-to-all通信操作。因此,MoE块中以E-C.的通信量为:
C o m m E C = 2 m H T ⋅ n − 1 n Comm_{EC}=2mHT\cdot \frac{n-1}{n} CommEC=2mHTnn1


B. Backward Phase

对于后向阶段,在E-C.中,系统需要传输生成梯度所需的所有中间结果,并且这个量等于它在前向阶段中发送的token的量

D-C.中,系统可以重用在前向阶段提取和缓存的专家。在专家模块计算出梯度后,梯度应该被发送回原始工作进程。梯度的大小与拉取的专家模型相同,通信方向相反。

此外,同一个专家在一台设备上的多个梯度被减少和合并,然后被送回。因此,在D-C.中,后向阶段中的通讯量也等于前向阶段中的通讯量


C. Ratio measure

在分析了两种模式的通讯量后,文章定义了一个度量 R R R 来评估 D-C. 的理论增益,它是两种范式下节点间通信量的比率:
R = C o m m E C C o m m D C = T 4 n H E R=\frac{Comm_{EC}}{Comm_{DC}}=\frac{T}{4nHE} R=CommDCCommEC=4nHET

给定训练参数可以计算出token的数量 T T T,包括批大小 B B B、序列长度 S S S 以及与相关的Gate参数 top-K: k k k T = B S k T=BSk T=BSk 于是有:
R = C o m m E C C o m m D C = B S k 4 n H E R=\frac{Comm_{EC}}{Comm_{DC}}=\frac{BSk}{4nHE} R=CommDCCommEC=4nHEBSk

R > 1 R>1 R>1 表明D-C.效率优于E-C.效率。


Be Janus

Janus是一个以专家为中心的范式和以数据为中心的范式的统一框架。Janus在混合专家模型模型的训练开始前进行评估。

对于其中 R ≤ 1 R\le 1 R1 的MoE块,Janus默认使用专家中心范式。
对于其中 R ≥ 1 R\ge 1 R1 的MoE块,Janus将使用以数据为中心的范式。

这篇关于Janus: Data-Centric MoE 通讯成本分析(2)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/272252

相关文章

java -jar命令运行 jar包时运行外部依赖jar包的场景分析

《java-jar命令运行jar包时运行外部依赖jar包的场景分析》:本文主要介绍java-jar命令运行jar包时运行外部依赖jar包的场景分析,本文给大家介绍的非常详细,对大家的学习或工作... 目录Java -jar命令运行 jar包时如何运行外部依赖jar包场景:解决:方法一、启动参数添加: -Xb

Apache 高级配置实战之从连接保持到日志分析的完整指南

《Apache高级配置实战之从连接保持到日志分析的完整指南》本文带你从连接保持优化开始,一路走到访问控制和日志管理,最后用AWStats来分析网站数据,对Apache配置日志分析相关知识感兴趣的朋友... 目录Apache 高级配置实战:从连接保持到日志分析的完整指南前言 一、Apache 连接保持 - 性

Linux中的more 和 less区别对比分析

《Linux中的more和less区别对比分析》在Linux/Unix系统中,more和less都是用于分页查看文本文件的命令,但less是more的增强版,功能更强大,:本文主要介绍Linu... 目录1. 基础功能对比2. 常用操作对比less 的操作3. 实际使用示例4. 为什么推荐 less?5.

spring-gateway filters添加自定义过滤器实现流程分析(可插拔)

《spring-gatewayfilters添加自定义过滤器实现流程分析(可插拔)》:本文主要介绍spring-gatewayfilters添加自定义过滤器实现流程分析(可插拔),本文通过实例图... 目录需求背景需求拆解设计流程及作用域逻辑处理代码逻辑需求背景公司要求,通过公司网络代理访问的请求需要做请

Java集成Onlyoffice的示例代码及场景分析

《Java集成Onlyoffice的示例代码及场景分析》:本文主要介绍Java集成Onlyoffice的示例代码及场景分析,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 需求场景:实现文档的在线编辑,团队协作总结:两个接口 + 前端页面 + 配置项接口1:一个接口,将o

IDEA下"File is read-only"可能原因分析及"找不到或无法加载主类"的问题

《IDEA下Fileisread-only可能原因分析及找不到或无法加载主类的问题》:本文主要介绍IDEA下Fileisread-only可能原因分析及找不到或无法加载主类的问题,具有很好的参... 目录1.File is read-only”可能原因2.“找不到或无法加载主类”问题的解决总结1.File

C#使用MQTTnet实现服务端与客户端的通讯的示例

《C#使用MQTTnet实现服务端与客户端的通讯的示例》本文主要介绍了C#使用MQTTnet实现服务端与客户端的通讯的示例,包括协议特性、连接管理、QoS机制和安全策略,具有一定的参考价值,感兴趣的可... 目录一、MQTT 协议简介二、MQTT 协议核心特性三、MQTTNET 库的核心功能四、服务端(BR

Dubbo之SPI机制的实现原理和优势分析

《Dubbo之SPI机制的实现原理和优势分析》:本文主要介绍Dubbo之SPI机制的实现原理和优势,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Dubbo中SPI机制的实现原理和优势JDK 中的 SPI 机制解析Dubbo 中的 SPI 机制解析总结Dubbo中

C#继承之里氏替换原则分析

《C#继承之里氏替换原则分析》:本文主要介绍C#继承之里氏替换原则,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#里氏替换原则一.概念二.语法表现三.类型检查与转换总结C#里氏替换原则一.概念里氏替换原则是面向对象设计的基本原则之一:核心思想:所有引py

基于Go语言实现Base62编码的三种方式以及对比分析

《基于Go语言实现Base62编码的三种方式以及对比分析》Base62编码是一种在字符编码中使用62个字符的编码方式,在计算机科学中,,Go语言是一种静态类型、编译型语言,它由Google开发并开源,... 目录一、标准库现状与解决方案1. 标准库对比表2. 解决方案完整实现代码(含边界处理)二、关键实现细