CIFAR10/CIFAR100数据集介绍---有Python版本的二进制数据格式说明

本文主要是介绍CIFAR10/CIFAR100数据集介绍---有Python版本的二进制数据格式说明,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

CIFAR-10/CIFAR-100数据集解析

转载自:https://www.cnblogs.com/cloud-ken/p/8456878.html

觉得有用的话,欢迎一起讨论相互学习~Follow Me

参考文献
CIFAR-10/CIFAR-100数据集

CIFAR-10和CIFAR-100被标记为8000万个微小图像数据集的子集。他们由Alex Krizhevsky,Vinod Nair和Geoffrey Hinton收集。

CIFAR-10数据集

CIFAR-10数据集由10个类的60000个32x32彩色图像组成,每个类有6000个图像。有50000个训练图像和10000个测试图像。
数据集分为五个训练批次和一个测试批次,每个批次有10000个图像。测试批次包含来自每个类别的恰好1000个随机选择的图像。训练批次以随机顺序包含剩余图像,但一些训练批次可能包含来自一个类别的图像比另一个更多。总体来说,五个训练集之和包含来自每个类的正好5000张图像。
以下是数据集中的类,以及来自每个类的10个随机图像:

CIFAR-10.png
这些类完全相互排斥。汽车和卡车之间没有重叠。“汽车”包括轿车,SUV,这类东西。“卡车”只包括大卡车。都不包括皮卡车。
airplane/automobile/bird/cat/deer/dog/frog/horse/ship/truck

CIFAR-10下载

CIFAR-10 python版本
CIFAR-10 Matlab版本
CIFAR-10二进制版本(适用于C程序)

数据集布局

Python / Matlab版本

我将描述数据集的Python版本的布局。Matlab版本的布局是相同的。
该存档包含文件data_batch_1,data_batch_2,...,data_batch_5以及test_batch。这些文件中的每一个都是用cPickle生成的Python“pickled”对象。这里是一个python2例程,它将打开这样的文件并返回一个字典:

def unpickle(file):import cPicklewith open(file, 'rb') as fo:dict = cPickle.load(fo)return dict

下面是一个python3实例

def unpickle(file):import picklewith open(file, 'rb') as fo:dict = pickle.load(fo, encoding='bytes')return dict

以这种方式加载的每个批处理文件都包含一个包含以下元素的字典:
数据 - 一个10000x3072 uint8的numpy数组。阵列的每一行存储32x32彩色图像即每一行存储32323=3072个数字信息。前1024个条目包含红色通道值,下一个1024个绿色,最后1024个蓝色。图像以行优先顺序存储,以便数组的前32个条目是图像第一行的红色通道值。
标签 - 范围为0-9的10000个数字的列表。索引i处的数字表示阵列数据中第i个图像的标签。
该数据集包含另一个名为batches.meta的文件。它也包含一个Python字典对象。它有以下条目:
label_names - 一个10个元素的列表,它为上述标签数组中的数字标签赋予了有意义的名称。例如,label_names [0] ==“飞机”,label_names [1] ==“汽车”等

二进制版本

二进制版本包含文件data_batch_1.bin,data_batch_2.bin,...,data_batch_5.bin以及test_batch.bin。这些文件中的每一个格式如下:

<1×标签> <3072×像素>
...
<1×标签> <3072×像素>

换句话说,第一个字节是第一个图像的标签,它是一个0-9范围内的数字。接下来的3072个字节是图像像素的值。前1024个字节是红色通道值,下1024个绿色,最后1024个蓝色。值以行优先顺序存储,因此前32个字节是图像第一行的红色通道值。
每个文件都包含10000个这样的3073字节的“行”图像,但没有任何分隔行的限制。因此每个文件应该完全是30730000字节长。
还有另一个文件,称为batches.meta.txt。这是一个ASCII文件,它将0-9范围内的数字标签映射到有意义的类名称。它仅仅是10个类名的列表,每行一个。第i行的类名称对应于数字标签i。

CIFAR-100.png

CIFAR-100数据集

这个数据集就像CIFAR-10,除了它有100个类,每个类包含600个图像。,每类各有500个训练图像和100个测试图像。CIFAR-100中的100个类被分成20个超类。每个图像都带有一个“精细”标签(它所属的类)和一个“粗糙”标签(它所属的超类)
以下是CIFAR-100中的类别列表:
| 超类 |类别|
| :-: | :-: |
|水生哺乳动物| 海狸,海豚,水獭,海豹,鲸鱼|
|鱼| 水族馆的鱼,比目鱼,射线,鲨鱼,鳟鱼|
|花卉| 兰花,罂粟花,玫瑰,向日葵,郁金香|
|食品容器| 瓶子,碗,罐子,杯子,盘子|
|水果和蔬菜| 苹果,蘑菇,橘子,梨,甜椒|
|家用电器| 时钟,电脑键盘,台灯,电话机,电视机|
|家用家具| 床,椅子,沙发,桌子,衣柜|
|昆虫| 蜜蜂,甲虫,蝴蝶,毛虫,蟑螂|
|大型食肉动物| 熊,豹,狮子,老虎,狼|
|大型人造户外用品| 桥,城堡,房子,路,摩天大楼|
|大自然的户外场景| 云,森林,山,平原,海|
|大杂食动物和食草动物| 骆驼,牛,黑猩猩,大象,袋鼠|
|中型哺乳动物| 狐狸,豪猪,负鼠,浣熊,臭鼬|
|非昆虫无脊椎动物| 螃蟹,龙虾,蜗牛,蜘蛛,蠕虫|
|人| 宝贝,男孩,女孩,男人,女人|
|爬行动物| 鳄鱼,恐龙,蜥蜴,蛇,乌龟|
|小型哺乳动物| 仓鼠,老鼠,兔子,母老虎,松鼠|
|树木| 枫树,橡树,棕榈,松树,柳树|
|车辆1| 自行车,公共汽车,摩托车,皮卡车,火车|
|车辆2| 割草机,火箭,有轨电车,坦克,拖拉机|

SuperclassClasses
aquaticmammals beaver, dolphin, otter, seal, whale
fishaquarium fish, flatfish, ray, shark, trout
flowersorchids, poppies, roses, sunflowers, tulips
foodcontainers bottles, bowls, cans, cups, plates
fruit and vegetablesapples, mushrooms, oranges, pears, sweet peppers
household electrical devicesclock, computer keyboard, lamp, telephone, television
householdfurniture bed, chair, couch, table, wardrobe
insectsbee, beetle, butterfly, caterpillar, cockroach
large carnivoresbear, leopard, lion, tiger, wolf
large man-made outdoor thingsbridge, castle, house, road, skyscraper
large natural outdoor scenescloud, forest, mountain, plain, sea
large omnivores and herbivorescamel, cattle, chimpanzee, elephant, kangaroo
medium-sized mammalsfox, porcupine, possum, raccoon, skunk
non-insect invertebratescrab, lobster, snail, spider, worm
peoplebaby, boy, girl, man, woman
reptilescrocodile, dinosaur, lizard, snake, turtle
small mammalshamster, mouse, rabbit, shrew, squirrel
treesmaple, oak, palm, pine, willow
vehicles 1bicycle, bus, motorcycle, pickup truck, train
vehicles 2lawn-mower, rocket, streetcar, tank, tractor

CIFAR-100下载

CIFAR-100 python版本
CIFAR-100 Matlab版本
CIFAR-100二进制版本(适用于C程序)

数据集布局

Python/matlab版本

python和Matlab版本的布局与CIFAR-10相同.

二进制版本

CIFAR-100的二进制版本与CIFAR-10的二进制版本相似,只是每个图像都有两个标签字节(粗略和细小)和3072像素字节,所以二进制文件如下所示:

<1 x粗标签> <1 x精标签> <3072 x像素>
...
<1 x粗标签> <1 x精标签> <3072 x像素>

这篇关于CIFAR10/CIFAR100数据集介绍---有Python版本的二进制数据格式说明的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/271695

相关文章

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚