一文看尽物体检测中的各种FPN

2023-10-24 00:30
文章标签 检测 物体 一文 fpn 看尽

本文主要是介绍一文看尽物体检测中的各种FPN,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

早期的物体检测算法,无论是一步式的,还是两步式的,通常都是在Backbone的最后一个stage(特征图分辨率相同的所有卷积层归类为一个stage)最后一层的特征图,直接外接检测头做物体检测。此种物体检测算法,可以称之为单stage物体检测算法。

由于单stage物体检测算法中,Backbone的最后一个stage的stride通常是32,导致输出的特征图分辨率是输入图片分辨率的1/32,太小,不利于物体检测,因此单stage的物体检测算法,一般会将最后一个stage的MaxPooling去掉或者将stride为2的conv改为stride为1的conv,以增大最后一个分辨率。

后来研究发现,单stage物体检测算法中,无法用单一stage的特征图同时有效的表征各个尺度的物体,因此,后来物体检测算法,就逐渐发展为利用不同stage的特征图,形成特征金字塔网络(feature parymid network),表征不同scale的物体,然后再基于特征金字塔做物体检测,也就是进入了FPN时代。

本文将认真梳理物体检测中常用的各种FPN。

解构物体检测各个阶段

如上图,我们常见的物体检测算法,其实可以分解为三个递进的阶段:

1)Backbone生成特征阶段

计算机视觉任务一般都是基于常用预训练的Backbone,生成抽象的语义特征,再进行特定任务微调。物体检测也是如此。

Backbone生成的特征,一般按stage划分,分别记作C1、C2、C3、C4、C5、C6、C7等,其中的数字与stage的编号相同,代表的是分辨率减半的次数,如C2代表stage2输出的特征图,分辨率为输入图片的1/4,C5代表,stage5输出的特征图,分辨率为输入图片的1/32。

2)特征融合阶段

这个是FPN特有的阶段,FPN一般将上一步生成的不同分辨率特征作为输入,输出经过融合后的特征。输出的特征一般以P作为编号标记。如FPN的输入是,C2、C3、C4、C5、C6,经过融合后,输出为P2、P3、P4、P5、P6。这个过程可以用数学公式表达:

[公式]

3)检测头输出bounding box
FPN输出融合后的特征后,就可以输入到检测头做具体的物体检测。

FPN的演进

物体检测性能提升,一般主要通过数据增强、改进Backbone、改进FPN、改进检测头、改进loss、改进后处理等6个常用手段。

其中FPN自从被提出来,先后迭代了不少版本。大致迭代路径如下图:

1)无融合

无融合,又利用多尺度特征的典型代表就是2016年日出的鼎鼎有名的SSD,它直接利用不同stage的特征图分别负责不同scale大小物体的检测。

2)自上而下单向融合

自上而下单向融合的FPN,事实上仍然是当前物体检测模型的主流融合模式。如我们常见的Faster RCNN、Mask RCNN、Yolov3、RetinaNet、Cascade RCNN等,具体各个FPN的内部细节如下图。

a)Faster/Master/Cascade RCNN中的FPN

Faster/Master/Cascade RCNN中的FPN,利用了C2-C6五个stage的特征,其中C6是从C5直接施加1x1/2的MaxPooling操作得到。FPN融合后得到P2-P6,其中P6直接等于C6,P5是先经过1x1Conv,再经过3x3Conv得到,P2-P4均是先经过1x1Conv,再融合上一层2xUpsample的特征,再经过3x3Conv得到。具体过程可以看上图。

b)RetinaNet中的FPN

RetinaNet中的FPN,利用了C3-C7五个stage的特征,其中C6是从C5直接施加3x3/2的Conv操作得到,C7是从C6直接施加3x3/2的Conv操作得到。FPN融合后得到P3-P7,其中P6、P7直接等于C6、C7,P5是先经过1x1Conv,再经过3x3Conv得到,P3-P4均是先经过1x1Conv,再融合上一层2xUpsample的特征,再经过3x3Conv得到。具体过程可以看上图。

可以看出,RetinaNet基本与Faster/Master/Cascade RCNN中的FPN一脉相承。只是利用的stage的特征略有差别,Faster/Master/Cascade RCNN利用了高分辨率低语义的C2,RetinaNet利用了更低分辨率更高语义的C7。其他都是细微的差别。

c)Yolov3中的FPN

Yolov3中的FPN与上述两个有比较大的区别。首先,Yolov3中的FPN只利用到了C3-C5三个stage的特征;其次,从C5征到P5特征,会先经过5层Conv,然后再经过一层3x3Conv;最后,C3-C4到P3-P4特征,上一层特征会先经过1x1Conv+2xUpsample,然后先与本层特征concatenate,再经过5层Conv,之后经过一层3x3Conv。看图最清楚。

可以看图仔细对比Yolov3与Faster/Master/Cascade RCNN以及RetinaNet细节上的区别。

3)简单双向融合

FPN自从提出来以后,均是只有从上向下的融合,PANet是第一个提出从下向上二次融合的模型,并且PANet就是在Faster/Master/Cascade RCNN中的FPN的基础上,简单增了从下而上的融合路径。看下图。

4)复杂的双向融合

PANet的提出证明了双向融合的有效性,而PANet的双向融合较为简单,因此不少文章在FPN的方向上更进一步,尝试了更复杂的双向融合,如ASFF、NAS-FPN和BiFPN。

ASFF
ASFF(论文:Learning Spatial Fusion for Single-Shot Object Detection)作者在YOLOV3的FPN的基础上,研究了每一个stage再次融合三个stage特征的效果。如下图。其中不同stage特征的融合,采用了注意力机制,这样就可以控制其他stage对本stage特征的贡献度。

NAS-FPN和BiFPN
NAS-FPN和BiFPN,都是google出品,思路也一脉相承,都是在FPN中寻找一个有效的block,然后重复叠加,这样就可以弹性的控制FPN的大小。


其中BiFPN的具体细节如下图。

Recursive-FPN
递归FPN是此文写作之时前两周刚刚新出炉的(原论文是DetectoRS: Detecting Objects with Recursive Feature Pyramid and Switchable Atrous Convolution),效果之好令人惊讶,使用递归FPN的DetectoRS是目前物体检测(COCO mAP 54.7)、实体分割和全景分割的SOTA,太强悍了。

递归FPN理解起来很容易,就是将传统FPN的融合后的输出,再输入给Backbone,进行二次循环,如下图。

下图给出了FPN与Recursive-FPN的区别,并且把一个2层的递归FPN展开了,非常简单明了,不做过多介绍。

5)M2det中的SFAM

M2det中的SFAM,比较复杂,它是先把C3与C5两个stage的特征融合成一个与C3分辨率相同的特征图(下图中的FFM1模块),然后再在此特征图上叠加多个UNet(下图中的TUM模块),最后将每个UNet生成的多个分辨率中相同分辨率特征一起融合(下图中的SFAM模块),从而生成最终的P3、P4、P5、P6特征,以供检测头使用。具体如下图。

每一个模块的详细细节如下图。

思考

FPN的优化会显著带来物体检测的性能提升,当前最好的FPN是递归FPN,期待将来更有效的FPN出现。

最近Facebook出了一篇文章object detection by transformer,如果transformer与各种强大的FPN结合,效果如何还是值得期待。

欢迎扫码关注同名微信公众号「小纸屑」,解密AI大骗局。

参考文献

  1. SSD: Single Shot Multibox Detector
  2. Faster RCNN: Towards Real-Time Object Detection with Region Proposal Networks
  3. Mask RCNN
  4. Yolov3: An Incremental Improvement
  5. RetinaNet: Focal Loss for Dense Object Detection
  6. Cascade RCNN: Delving into High Quality Object Detection
  7. PANet: Path Aggregation Network for Instance Segmentation
  8. ASFF: Learning Spatial Fusion for Single-Shot Object Detection
  9. NAS-FPN: Learning Scalable Feature Pyramid Architecture for Object Detection
  10. BiFPN: (EfficientDet: Scalable and Efficient Object Detection)
  11. DetectoRS: Detecting Objects with Recursive Feature Pyramid and Switchable Atrous Convolution
  12. SFAM(M2det: A single-shot object detector based on multi-level feature pyramid network)

这篇关于一文看尽物体检测中的各种FPN的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/271466

相关文章

一文解析C#中的StringSplitOptions枚举

《一文解析C#中的StringSplitOptions枚举》StringSplitOptions是C#中的一个枚举类型,用于控制string.Split()方法分割字符串时的行为,核心作用是处理分割后... 目录C#的StringSplitOptions枚举1.StringSplitOptions枚举的常用

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

C#自动化实现检测并删除PDF文件中的空白页面

《C#自动化实现检测并删除PDF文件中的空白页面》PDF文档在日常工作和生活中扮演着重要的角色,本文将深入探讨如何使用C#编程语言,结合强大的PDF处理库,自动化地检测并删除PDF文件中的空白页面,感... 目录理解PDF空白页的定义与挑战引入Spire.PDF for .NET库核心实现:检测并删除空白页

一文详解MySQL索引(六张图彻底搞懂)

《一文详解MySQL索引(六张图彻底搞懂)》MySQL索引的建立对于MySQL的高效运行是很重要的,索引可以大大提高MySQL的检索速度,:本文主要介绍MySQL索引的相关资料,文中通过代码介绍的... 目录一、什么是索引?为什么需要索引?二、索引该用哪种数据结构?1. 哈希表2. 跳表3. 二叉排序树4.

Python脚本轻松实现检测麦克风功能

《Python脚本轻松实现检测麦克风功能》在进行音频处理或开发需要使用麦克风的应用程序时,确保麦克风功能正常是非常重要的,本文将介绍一个简单的Python脚本,能够帮助我们检测本地麦克风的功能,需要的... 目录轻松检测麦克风功能脚本介绍一、python环境准备二、代码解析三、使用方法四、知识扩展轻松检测麦

一文带你迅速搞懂路由器/交换机/光猫三者概念区别

《一文带你迅速搞懂路由器/交换机/光猫三者概念区别》讨论网络设备时,常提及路由器、交换机及光猫等词汇,日常生活、工作中,这些设备至关重要,居家上网、企业内部沟通乃至互联网冲浪皆无法脱离其影响力,本文将... 当谈论网络设备时,我们常常会听到路由器、交换机和光猫这几个名词。它们是构建现代网络基础设施的关键组成

一文解密Python进行监控进程的黑科技

《一文解密Python进行监控进程的黑科技》在计算机系统管理和应用性能优化中,监控进程的CPU、内存和IO使用率是非常重要的任务,下面我们就来讲讲如何Python写一个简单使用的监控进程的工具吧... 目录准备工作监控CPU使用率监控内存使用率监控IO使用率小工具代码整合在计算机系统管理和应用性能优化中,监

一文详解如何使用Java获取PDF页面信息

《一文详解如何使用Java获取PDF页面信息》了解PDF页面属性是我们在处理文档、内容提取、打印设置或页面重组等任务时不可或缺的一环,下面我们就来看看如何使用Java语言获取这些信息吧... 目录引言一、安装和引入PDF处理库引入依赖二、获取 PDF 页数三、获取页面尺寸(宽高)四、获取页面旋转角度五、判断

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon

一文详解SpringBoot中控制器的动态注册与卸载

《一文详解SpringBoot中控制器的动态注册与卸载》在项目开发中,通过动态注册和卸载控制器功能,可以根据业务场景和项目需要实现功能的动态增加、删除,提高系统的灵活性和可扩展性,下面我们就来看看Sp... 目录项目结构1. 创建 Spring Boot 启动类2. 创建一个测试控制器3. 创建动态控制器注